Vitamin D enhances migration but decreases gene expression of vascular endothelial growth factor and tumor necrosis factor-α in Wharton’s jelly mesenchymal stem cells
Main Article Content
Abstract
Mesenchymal stem cells (MSCs) have gained significant interest for their potential application in repairing damaged tissues through immunomodulatory functions. Vitamin D has been shown to regulate both the innate and adaptive immune systems. Active forms of Vitamin D, such as 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are known to influence the action of mesenchymal stem cells (MSCs) in several mechanisms, such as stimulating their proliferation and osteogenic differentiation, as well as tissue regeneration. This study aimed to investigate the effects of vitamin D supplementation on the biological properties and expression of cytokines and growth factor genes in MSCs isolated from the human umbilical cord (UC). MSCs were isolated from Wharton’s jelly (WJ-MSC) of UC, cultured, and supplemented with various concentrations of vitamin D3. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability, and a scratch wound healing assay was conducted to evaluate the migration capacity of MSCs. The mRNA expression levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were quantified using reverse transcription-polymerase chain reaction (RT-PCR). This study showed that supplementation with 50 nM of vitamin D3 for 48 h significantly increased the viability and migratory capacity of MSCs. Furthermore, vitamin D supplementation significantly decreased the mRNA levels of TNF-α and VEGF but did not affect IL-6 gene expression compared to the control group. These findings suggest that vitamin D supplementation can enhance the biological characteristics and modulate the expression of key immunomodulatory factors in MSCs, potentially improving the effectiveness of MSC-based therapies.
Downloads
Article Details
Copyright (c) 2025 Vitriyanna Mutiara Yuhendri, Nurfi Pratiwi, Ariza Julia Paulina, Ismawati Ismawati, Nicko Pisceski Kusika Saputra, Arfianti Arfianti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res Ther. 2022;13(1):366. https://doi.org/10.1186/s13287-022-03054-0
Mebarki M, Abadie C, Larghero J, Cras A. Human umbilical cord-derived mesenchymal stem/stromal cells: A promising candidate for the development of advanced therapy medicinal products. Stem Cell Res Ther. 2021;12(1):152. https://doi.org/10.1186/s13287-021-02222-y
Song I, Rim J, Lee J, Jang I, Jung B, Kim K, et al. Therapeutic potential of human fetal mesenchymal stem cells in musculoskeletal disorders: A narrative review. Int J Mol Sci. 2022;23(3):1439. https://doi.org/10.3390/ijms23031439
Jovic D, Yu Y, Wang D, Wang K, Li H, Xu F, et al. A brief overview of global trends in msc-based cell therapy. Stem Cell Rev Rep. 2022;18(5):1525–45. https://doi.org/10.1007/s12015-022-10369-1
Guenther R, Dreschers S, Maassen J, Reibert D, Skazik-Voogt C, Gutermuth A. The treasury of Wharton’s jelly. Stem Cell Rev Rep. 2022;18(5):1627–38. https://doi.org/10.1007/s12015-021-10217-8
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand?. J Adv Res. 2024;S2090-1232(24)00181-4. https://doi.org/10.1016/j.jare.2024.05.004
Jimenez-Puerta GJ, Marchal JA, López-Ruiz E, Gálvez-Martín P. Role of mesenchymal stromal cells as therapeutic agents: Potential mechanisms of action and implications in their clinical use. JCM. J Clin Med. 2020;9(2):445. https://doi.org/10.3390/jcm9020445
Navarro LVL, Chen X, Viviescas LTG, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, et al. Mesenchymal stem cells for critical limb ischemia: Their function, mechanism, and therapeutic potential. Stem Cell Res Ther. 2022;13(1):345. https://doi.org/10.1186/s13287-022-03043-3
Huang Y, Wu Q, Tam PKH. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int J Mol Sci. 2022;23(17):10023. https://doi.org/10.3390/ijms231710023
Eleuteri S, Fierabracci A. Insights into the Secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci. 2019;20(18):4597. https://doi.org/10.3390/ijms20184597
Kehl D, Generali M, Mallone A, Heller M, Uldry A-C, Cheng P, et al. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med. 2019;4:8. https://doi.org/10.1038/s41536-019-0070-y
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song G. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784. https://doi.org/10.3390/cells8080784
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in clinical development of mesenchymal stromal/stem cells: Concise review. Stem Cells Transl Med. 2019;8(11):1135–48. https://doi.org/10.1002/sctm.19-0044
Uberti B, Plaza A, Henríquez C. Pre-conditioning strategies for mesenchymal stromal/stem cells in inflammatory conditions of livestock species. Front Vet Sci. 2022;9:806069. https://doi.org/10.3389/fvets.2022.806069
Su Y, Xu C, Cheng W, Zhao Y, Sui L, Zhao Y. Pretreated mesenchymal stem cells and their secretome: Enhanced immunotherapeutic strategies. Int J Mol Sci. 2023;24(2):1277. https://doi.org/10.3390/ijms24021277
Charoenngam N, Shirvani A, Holick MF. Vitamin D for skeletal and non-skeletal health: What we should know. J Clin Orthop Trauma. 2019;10(6):1082–93. https://doi.org/10.1016/j.jcot.2019.07.004
Athanassiou L, Mavragani CP, Koutsilieris M. The immunomodulatory properties of vitamin D. Mediterr J Rheumatol. 2022;33(1):7–13. https://doi.org/10.31138/mjr.33.1.7
Fernández-Barral A, Bustamante-Madrid P, Ferrer-Mayorga G, Barbáchano A, Larriba MJ, Muñoz A. Vitamin D effects on cell differentiation and stemness in cancer. Cancers (Basel). 2020;12(9):2413. https://doi.org/10.3390/cancers12092413
Hou Y-C, Lu C-L, Zheng C-M, Liu W-C, Yen T-H, Chen R-M, et al. The role of vitamin D in modulating mesenchymal stem cells and endothelial progenitor cells for vascular calcification. Int J Mol Sci. 2020;21(7):2466. https://doi.org/10.3390/ijms21072466
Todtenhaupt P, Franken LA, Groene SG, van Hoolwerff M, van der Meeren LE, van Klink JMM, et al. A robust and standardized method to isolate and expand mesenchymal stromal cells from human umbilical cord. Cytotherapy. 2023;25(10):1057–68. https://doi.org/10.1016/j.jcyt.2023.07.004
Arfianti A, Ulfah, Hutabarat LS, Agnes IG, Budiarti AD, Sahara NS, et al. Hipoxia modulates the secretion of growth factors of human umbilical cord-derived mesenchymal stem cells. Biomedicine (Taipei). 2023;13(3):49–56. https://doi.org/10.37796/2211-8039.1416
Chen J, Liu Y, Zhang J, Yang Y, Liang H, Li T, et al. External application of human umbilical cord-derived mesenchymal stem cells in hyaluronic acid gel repairs foot wounds of types I and II diabetic rats through paracrine action mode. Stem Cells Transl Med. 2023;12(10):689-706. https://doi.org/10.1093/stcltm/szad050
Xiang D, Zou J, Zhu X, Chen X, Luo J, Kong L, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020;78:153294. https://doi.org/10.1016/j.phymed.2020.153294
Mathot F, Rbia N, Thaler R, Dietz A, Van Wijnen A, Bishop A, et al. Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides. Neural Regen Res. 2021;16(8):1613. https://doi.org/10.4103/1673-5374.303031
Wang D, Wang S, Huang S, Zhang Z, Yuan X, Feng X, et al. Serum IFN‐γ predicts the therapeutic effect of mesenchymal stem cells transplantation in systemic lupus erythematosus patients. Stem Cells Transl Med. 2017;6(9):1777–85. https://doi.org/10.1002/sctm.17-0002
Borojević A, Jauković A, Kukolj T, Mojsilović S, Obradović H, Trivanović D, et al. Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogenesis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling. Biomolecules. 2022;12(2):323. https://doi.org/10.3390/biom12020323
Escobar LM, Bendahan Z, Bayona A, Castellanos JE, González M-C. Effect of vitamins D and E on the proliferation, viability, and differentiation of human dental pulp stem cells: An in vitro study. Int J Dent. 2020;2020:8860840. https://doi.org/10.1155/2020/8860840
Lee H-J, Song Y-M, Baek S, Park Y-H, Park J-B. Vitamin D enhanced the osteogenic differentiation of cell spheroids composed of bone marrow stem cells. Medicina (Kaunas). 2021;57(11):1271. https://doi.org/10.3390/medicina57111271
Song I, Kim B-S, Kim C-S, Im G-I. Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells. Biochem Biophys Res Commun. 2011;408(1):126–31. https://doi.org/10.3390/medicina57111271
Posa F, Di Benedetto A, Colaianni G, Cavalcanti-Adam EA, Brunetti G, Porro C, et al. Vitamin D effects on osteoblastic differentiation of mesenchymal stem cells from dental tissues. Stem Cells Int. 2016;2016:9150819. https://doi.org/10.1155/2016/9150819
Wang Y-L, Hong A, Yen T-H, Hong H-H. Isolation of mesenchymal stem cells from human alveolar periosteum and effects of vitamin D on osteogenic activity of periosteum-derived cells. J Vis Exp. 2018;(135):57166. https://doi.org/10.3791/57166
Saedi AA, Debruin D, Hayes A, Kremer R, Duque G. Elucidating the genetic effect of vitamin D on mesenchymal stem cell differentiation in vitro. Europe PMC. 2022;1:1-12. https://doi.org/10.21203/rs.3.rs-1281522/v1
Posa F, Benedetto AD, Cavalcanti-Adam EA, Colaianni G, Porro C, Trotta T, et al. Vitamin D promotes MSC osteogenic differentiation stimulating cell adhesion and αVβ3 expression. Stem Cells Int. 2018; 6958713. https://doi.org/10.1155/2018/6958713
Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab. 2014;99(4):1367–74. https://doi.org/10.1210/jc.2013-2103
Wang Y, Keulenaer GWD, Lee RT. Vitamin D3-up-regulated protein-1 Is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem. 2002;277(29):26496-500. https://doi.org/10.1074/jbc.m202133200
Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, et al. Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science. 1999;283(5406):1317-21. https://doi.org/10.1126/science.283.5406.1317
Zhou J, Wang F, Ma Y, Wei F. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system. Osteoporos Int. 2018;29(8):1917–26. https://doi.org/10.1007/s00198-018-4547-0
Wang D, Lin L, Lei K, Zeng J, Luo J, Yin Y, et al. Vitamin D3 analogue facilitates epithelial wound healing through promoting epithelial-mesenchymal transition via the Hippo pathway. J Dermatol Sci. 2020;100(2):120-128. https://doi.org/10.1016/j.jdermsci.2020.08.015
Rebsamen MC, Sun J, Norman AW, Liao JK. 1α,25-Dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase. Circ Res. 2002;91(1):17-24. https://doi.org/10.1161/01.res.0000025269.60668.0f
Pittarella P, Squarzanti DF, Molinari C, Invernizzi M, Uberti F, Renò F. NO-dependent proliferation and migration induced by Vitamin D in HUVEC. J Steroid Biochem Mol Biol. 2015;149:35-42. https://doi.org/10.1016/j.jsbmb.2014.12.012
Sattary M, Rafienia M, Kazemi M, Salehi H, Mahmoudzadeh M. Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;97:141-155. https://doi.org/10.1016/j.msec.2018.12.030
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front Cell Dev Biol. 2021;9:661532. https://doi.org/10.3389/fcell.2021.661532
Nam D, Park A, Dubon MJ, Yu J, Kim W, Son Y, et al. Coordinated regulation of mesenchymal stem cell migration by various chemotactic stimuli. Int J Mol Sci. 2020;21(22):8561. https://doi.org/10.3390/ijms21228561
Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA, et al. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun. 2010 Jul 16;398(1):105-10. https://doi.org/10.1016/j.bbrc.2010.06.043
Naaldijk Y, Johnson AA, Ishak S, Meisel HJ, Hohaus C, Stolzing A. Migrational changes of mesenchymal stem cells in response to cytokines, growth factors, hypoxia, and aging. Exp Cell Res. 2015;338(1):97-104. https://doi.org/10.1016/j.yexcr.2015.08.019
Coperchini F, Greco A, Croce L, Petrosino E, Grillini B, Magri F, et al. Vitamin D reduces thyroid cancer cells migration independently from the modulation of CCL2 and CXCL8 chemokines secretion. front endocrinol. 2022;13:876397. https://doi.org/10.3389/fendo.2022.876397
Ji J, Cheng X, Wang W, Zhang J. Vitamin D regulates cell viability, migration and proliferation by suppressing galectin-3 (Gal-3) gene in ovarian cancer cells. J Biosci. 2020;45(1):69. http://doi.org/10.1007/s12038-020-00038-1
Liu Z, Sun H, Chen Y, He J, Zhu L, Yang B, et al. High glucose-induced injury in human umbilical vein endothelial cells is alleviated by vitamin D supplementation through downregulation of TIPE1. Diabetol Metab Syndr. 2024;16(1):18. https://doi.org/10.1186/s13098-024-01264-5
Viveiros MMH, Viveiros MEDM, Silva MG, Kaneno R, Avelino NP, Rainho CA, et al. Expression of inflammatory cytokines in mesenchymal stem cells derived from proximal humerus fractures. Stem Cell Investig. 2022;9:3–3. https://doi.org/10.21037/sci-2021-031
Beldi G, Khosravi M, Abdelgawad ME, Salomon BL, Uzan G, Haouas H, et al. TNFα/TNFR2 signaling pathway: An active immune checkpoint for mesenchymal stem cell immunoregulatory function. Stem Cell Res Ther. 2020;11(1):281. https://doi.org/10.1186/s13287-020-01740-5
Egea V, von Baumgarten L, Schichor C, Berninger B, Popp T, Neth P, et al. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death Differ. 2011;18(5):853–63. https://doi.org/10.1038/cdd.2010.154
Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, Aldea M, et al. 1,25-Dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis. 2009;204(1):85–9. https://doi.org/10.1016/j.atherosclerosis.2008.08.020
Kagiwada H, Yashiki T, Ohshima A, Tadokoro M, Nagaya N, Ohgushi H. Human mesenchymal stem cells as a stable source of VEGF-producing cells. J Tissue Eng Regen Med. 2008;2(4):184–9. https://doi.org/10.1002/term.79
Fierro FA, Magner N, Beegle J, Dahlenburg H, Logan White J, Zhou P, et al. Mesenchymal stem/stromal cells genetically engineered to produce vascular endothelial growth factor for revascularization in wound healing and ischemic conditions. Transfusion. 2019;59(S1):893–7. https://doi.org/10.1111/trf.14914
Schmelzer E, McKeel DT, Gerlach JC. Characterization of human mesenchymal stem cells from different tissues and their membrane encasement for prospective transplantation therapies. Biomed Res Int. 2019;2019:6376271. https://doi.org/10.1155/2019/6376271
Shin S, Lee J, Kwon Y, Park K-S, Jeong J-H, Choi S-J, et al. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton’s jelly. IJMS. 2021;22(2):845. https://doi.org/10.3390/ijms22020845
Yang C-Y, Chang P-Y, Chen J-Y, Wu B-S, Yang A-H, Lee OK-S. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther. 2021;12(1):193. https://doi.org/10.1186/s13287-021-02270-4
Kwon DH, Hwang J, You H, Kim NY, Lee GY, Han SN. Effects of an in vitro Vitamin D Treatment on the Inflammatory Responses in Visceral Adipose Tissue from Ldlr−/− mice. Nutr Res Pract. 2024;18(1):19. https://doi.org/10.4162/nrp.2024.18.1.19
Deng W, Chen W, Zhang Z, Huang S, Kong W, Sun Y, et al. Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus. Clin Immunol. 2015;161(2):209-16. https://doi.org/10.1016/j.clim.2015.07.011
He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol. 2019;311:15-32. https://doi.org/10.1016/j.expneurol.2018.09.006
Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WCW. Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response. Stem Cells Int. 2016;2016:3924858. https://doi.org/10.1155/2016/3924858
Noronha NC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131. https://doi.org/10.1186/s13287-019-1259-0
Moeinabadi-Bidgoli K, Mazloomnejad R, Maal AB, Aghdaei HA, Arki MK, Hossein-Khannazer N, et al. Genetic modification and preconditioning strategies to enhance functionality of mesenchymal stromal cells: a clinical perspective. Expert Opin Biol Ther. 2023;23(6):461-478. https://doi.org/10.1080/14712598.2023.2205017
Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, et al. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J Stem Cells. 2023;15(5):400–20. https://doi.org/10.4252/wjsc.v15.i5.400