Spectroscopic characterization of rosella flower extract (Hibiscus sabdariffa L.) and its antibacterial activity against Enterobacter aerogenes in suspected typhoid cases
Main Article Content
Abstract
Typhoid, a serious bacterial disease, has spurred research into natural products like rosella (Hibiscus sabdariffa L.) for potential treatments. This study investigates the chemical components found in Rosella extract using spectroscopy approximation, assisted by Fourier transform infrared spectroscopy (FTIR) and Gas chromatography–mass spectrometry (GC–MS). The antibacterial activity of rosella extract on bacteria from stool cultures of suspected typhoid cases continues to be evaluated. The antibacterial experimental employed a post-test-only control group design, using 30 μg Chloramphenicol as a positive control, sterile distilled water as the negative control, rosella extract at concentrations of 25%, 50%, 75%, and 100% as the observed variable. Stool samples from typhoid patients were identified, and Enterobacter aerogenes were detected using VITEK®2 testing. Cultivated bacteria from the samples were tested to determine the antibacterial activity of the rosella extract. Phytochemical studies confirmed the presence of tannins, alkaloids, flavonoids, and saponins in the rosella extract. Additionally, the spectroscopic evaluation from FTIR and GC-MS showed the presence of chemical groups, including esters, aldehydes, and aromatics. Further clinical tests demonstrated antibacterial activity at the minimum inhibitory concentration. The results showed an increasing inhibition zone of bacterial growth, correlating with the increase in rosella extract concentration. Although the antibacterial activity of rosella extract was lower compared to commercial Chloramphenicol, this natural product has demonstrated antibacterial activity and shows potential as a candidate for future herbal medicine development.
Downloads
Article Details
Copyright (c) 2025 Siti Rohani, Fadhil Rizki Martha, Trisnawati Mundijo, Yesi Astri, Malika Zilda, Agnes Melianti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Doern CD. Classification of medically important bacteria. Elsevier eBooks. 2024 Jan 1;9–21. https://doi.org/10.1016/B978-0-12-818619-0.00029-0
Wesevich A, Sutton G, Ruffin F, Park LP, Fouts DE, Fowler VG, et al. Newly named Klebsiella aerogenes (formerly Enterobacter aerogenes) Is associated with poor clinical outcomes relative to other enterobacter species in patients with bloodstream infection. J Clin Microbiol. 2020;58(9):e00582-20. https://doi.org/10.1128/jcm.00582-20
Franzone JP, Shao W, Komarow L, Jacob JT, Satlin MJ, Kaye KS, et al. 101. Patients with carbapenem-resistant Klebsiella aerogenes and Enterobacter cloacae complex colonization or infection have different baseline characteristics but similar mortality and clinical outcomes. Open Forum Infect Dis. 2025;12(Suppl 1):ofae631.038. https://doi.org/10.1093/ofid/ofae631.038
Elsherbeny SM, Rizk DE, Al-Ashmawy M, Barwa R. Prevalence and antimicrobial susceptibility of Enterobacteriaceae isolated from ready-to-eat foods retailed in Damietta, Egypt. Egypt J Basic Appl Sci, 2024;11(1):116–134. https://doi.org/10.1080/2314808X.2024.2307847
Resende JA, Silva VL, de Oliveira TL, et al. Genome sequencing of four multidrug-resistant Enterobacter aerogenes isolates from hospitalized patients in Brazil. Front Microbiol. 2016;7:1649. https://doi.org/10.3389/fmicb.2016.01649
Al-Hashimi AG. Antioxidant and antibacterial activities of Hibiscus sabdariffa L. extracts. African J Food Sci. 2012;6(21):506-511. https://doi.org/10.5897/AJFS12.099
Márquez-Rodríguez AS, Nevárez-Baca S, Lerma-Hernández JC, Hernández-Ochoa LR, Nevárez-Moorillon GV, Gutiérrez-Méndez N, Muñoz-Castellanos LN, Salas E. In vitro antibacterial activity of Hibiscus sabdariffa L. phenolic extract and its in situ application on shelf-life of beef meat. Foods. 2020;9(8):1080. https://doi.org/10.3390/foods9081080.
Chongwilaikasem N, Sithisarn P, Rojsanga P, Sithisarn P. Green extraction and partial purification of roselle (Hibiscus sabdariffa L.) extracts with high amounts of phytochemicals and in vitro antioxidant and antibacterial effects. J Food Sci. 2024;89(12):8819-8835. https://doi.org/10.1111/1750-3841.17418.
Zatla AT, Hammoudi A. Phytochemical screening and inflammatory activity evaluation of hydroalcoholic extract of glycyrrhiza glabra root. Chem Proc. 2024;16(1):5. https://doi.org/10.3390/ecsoc-28-20148
Yuniati R, Zainuri M, Kusumaningrum H. Qualitative tests of secondary metabolite compounds in ethanol extract of spirulina platensis from Karimun Jawa Sea, Indonesia. Biosaintifika. 2020;12(3):343-349. https://doi.org/10.15294/biosaintifika.v12i3.23153
Alemu M, Lulekal E, Asfaw Z, Warkineh B, Debella A, Abebe A, Degu S, Debebe E. Antibacterial activity and phytochemical screening of traditional medicinal plants most preferred for treating infectious diseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia. PLoS One. 2024;19(3):e0300060. https://doi.org/10.1371/journal.pone.0300060.
Sehim AE, Amin BH, Yosri M, Salama HM, Alkhalifah DH, Alwaili MA, Elghaffar RYA. GC-MS analysis, antibacterial, and anticancer activities of Hibiscus sabdariffa L. methanolic extract: In vitro and in silico studies. Microorganisms. 2023;11(6):1601. https://doi.org/10.3390/microorganisms11061601
Wu Q, Shabbir MAB, Peng D, Yuan Z, Wang Y. Microbiological inhibition-based method for screening and identifying of antibiotic residues in milk, chicken egg and honey. Food Chem. 2021:363:130074. https://doi.org/10.1016/j.foodchem.2021.130074 .
Paraíso CM, Santos SS, Ogawa CYL, Sato F, Santos OAA, Madrona GS. Hibiscus sabdariffa L. Extract: characterization (FTIR-ATR), storage stability and food application. Emir J Food Agric. 2020;32(1):55-61. https://dx.doi.org/10.30595/sainteks.v16i2.7126
Pataki BÁ, Matamoros S, van der Putten BCL, Remondini D, Giampieri E, Aytan-Aktug D, Hendriksen RS, Lund O, Csabai I, Schultsz C; SPS COMPARE ML-AMR group. Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with machine learning. Sci Rep. 2020;10(1):15026. https://doi.org/10.1038/s41598-020-71693-5
Okereke CN, Iroka FC, Chukwuma MO. Phytochemical analysis and medicinal uses of Hibiscus sabdariffa. Int J Herb Med. 2015;2(6):16-19. Available from: https://www.florajournal.com/vol2issue6/mar2015/2-6-11.1.pdf
Dalhatu A, Yunusa U, Abdulmaleek MA, Idris A, Sani DK, Amina SR, Binta MY. Qualitative and quantitative phytochemical analysis and medicinal uses of Hibiscus sabdariffa (Zobo) and Hyphaene thebaica (Goriba). Arid Zone J Basic Appl Res. 2023;2(1):8-13. http://doi.org/10.55639/607.4656
Anokwuru CP, Esiaba I, Ajibaye O, Adesuyi AO. Polyphenolic content and antioxidant activity of Hibiscus sabdariffa Calyx. Res J Med Plants. 2011;5(5):557-566. https://scialert.net/fulltext/?doi=rjmp.2011.557.566
Blaise Pascal N, Joseph M, Attibayeba MN. Antioxidant activity of phenolic compounds in Hibiscus sabdariffa from Congo. AJAR. 2023;19(11):1056-1068. http://dx.doi.org/10.5897/AJAR2023.16479
Adamu H, Ngwu RO. Phytochemical Screening and antibacterial activities of Hibiscus sabdariffa L. leaf extracts. NJCR. 2023;19(1):105-112. https://www.ajol.info/index.php/njcr/article/download/127652/117181/0
Usman M, Sodipo OA. Foaming characteristics of saponins of leaves of Hibiscus sabdariffa Linn (Red Variety). IJNRD. 2021;10(12):39-43. https://doi.org/10.24940/ijird/2021/v10/i12/DEC21002
Reddy VR, Bindu MS. Phytochemical compounds analysis and antimicrobial activity in Hibiscus sabdariffa L. (Roselle) leaves. IJCRT. 2021;9(1):3630-3636. https://ijcrt.org/papers/IJCRT2101446.pdf
Lobiuc A, Pavăl NE, Mangalagiu II, Gheorghiță R, Teliban GC, Amăriucăi-Mantu D, et al. Future antimicrobials: natural and functionalized phenolics. Molecules. 2023;28(3):1114. https://doi.org/10.3390/molecules28031114.
Zhong-hui PU, Zhang YQ, Yin ZQ, Xu J, Jia RY, Lu Y, Yang F et al. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3,4-diyl ester from neem oil. Agricultural Sciences in China. 2010;9(8):1236-1240. https://doi.org/10.1016/S1671-2927(09)60212-1
Harja D, Chouni A, Paul S. Phytochemistry, antioxidant and anti-diabetic activities of Sterculia villosa in-vitro. Pharmacological Research - Modern Chinese Medicine. 2024;100530–0. https://doi.org/10.1016/j.prmcm.2024.100530.
Ngan LTM, Tan MT, Hoang NVM, Thanh DT, Linh NTT, Hoa TTH, et al. Antibacterial activity of Hibiscus rosa-sinensis L. red flower against antibiotic-resistant strains of Helicobacter pylori and identification of the flower constituents. Braz J Med Biol Res. 2021;54(7):e19889. https://doi.org/10.1590/1414-431x2020e10889
Sari IP, Noviani Y, Rachmadi R, Mumpuni E. Formulation and antioxidant activity of purple rosella flower (Hibiscus sabdariffa L.) combination as nutraseutical. Jurnal Ilmu Kefarmasian Indonesia. 2023;21(1):139-144. https://doi.org/10.35814/jifi.v21i1.1395
Rassem HH, Khamidun MHB, Ali UFM, Hadibarata T, Alrabie NA. Comprehensive analysis of antioxidant and antibacterial activities of water and methanol extracts of Hibiscus flower. Journal of King Saud University - Science. 2024;36(11):103506. https://doi.org/10.1016/j.jksus.2024.103506
Aritonang TR, Siantar RL, Simanjuntak FM. The effectiveness of steeping rosella (Hibiscus sabdariffa) against hypertension in the elderly. Int J Sci Soc. 2021;3(1):412-419. https://doi.org/10.54783/ijsoc.v3i1.308
Alharbi AE, AlHussaini AM, Alshami I. A comprehensive review of the antimicrobial effects of hibiscus species. Cureus. 2024;16(11):e73062. https://doi.org/10.7759/cureus.73062.