Antibiotic Susceptibility Pattern of the Potential Pathogens of Ventilator Associated Pneumonia in the Endotracheal Tubes of Critically Ill Patients
Main Article Content
Abstract
An endotracheal (ET) tube offers surface for potential pathogens to attach and produce biofilm. These potential pathogens are typically hospital flora with a broad range of antibiotic resistance. The study aimed to characterize the biofilm-producing flora in ET tube of critically ill patients. Following extubation, ET tubes were retrieved aseptically from 100 different patients and promptly transported in a sterile ziplock bag. Each ET tube was cut into three different sections; inner lumen was scraped out and inoculated on Blood agar, MacConkey agar, and Chocolate agar. Colonies produced on media were tested for antibiotic susceptibility testing by applying disc diffusion and Colistin minimum inhibitory concentration (MIC). Out of 100 ET tubes, monomicrobial growth was observed in 62, polymicrobial growth in 14, and no growth in 24 specimens. A total of 93 potential pathogens were isolated including 25 (26.89%) Acinetobacter species, 23 (24.73%) Klebsiella species, 15(16.12%) Pseudomonas species, 13 (13.98%) E. coli, 6 (6.45%), Staphylococcus aureus, 4 (4.3%) Coagulase Negative Staphylococcus species (CoNS), 2 (2.15%) Proteus species, 1 (1.07%) Enterobacter species and 4 (4.3%) Candida species. Imipenem and Colistin proved to be among the most successful antibiotics against gram negative isolates. Only 1 out of 25 Acinetobacter species was resistant to Colistin. Methicillin resistance emerged in two S. aureus and three CoNS strains. Microorganisms usually adhere themselves to the surface of ET tubes. They may act as potential pathogens for the onset of Ventilator Associated Pneumonia (VAP) and are resistant to commonly administered antibiotics in hospitals. A technique to reduce or prevent the risk of biofilm development is crucial.
Downloads
Article Details
Copyright (c) 2023 Prabhat Kiran Khatri, Vikrant Negi, Naveen Kishoria, Namit Mathur, Vandana Sharma
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. Npj Biofilms and Microbiomes. 2021;7. DOI: 10.1038/s41522-021-00251-2. DOI: https://doi.org/10.1038/s41522-021-00251-2
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell. 2021;8(2):28-56. DOI: 10.15698/mic2021.02.741 DOI: https://doi.org/10.15698/mic2021.02.741
Sakano T, Bittner EA, Chang MG, Berra L. Above and beyond: biofilm and the ongoing search for strategies to reduce ventilator-associated pneumonia (VAP). Crit Care. 2020;24(1):510. DOI:10.1186/s13054-020-03234-5 DOI: https://doi.org/10.1186/s13054-020-03234-5
Mann R, Holmes A, McNeilly O, Cavaliere R, Sotiriou GA, Rice SA, et al. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: Adaptation phenomena and cross-resistance. J Nanobiotechnol. 2021;19. DOI:10.1186/s12951-021-01027-8. DOI: https://doi.org/10.1186/s12951-021-01027-8
Wang Y, Cai B, Ni D, Sun Y, Wang G, Jiang H. A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. J Nanobiotechnol. 2022;20. DOI:10.1186/s12951-022-01323-x. DOI: https://doi.org/10.1186/s12951-022-01323-x
Lethongkam S, Daengngam C, Tansakul C, Siri R, Chumpraman A, Phengmak M, et al. Prolonged inhibitory effects against planktonic growth, adherence, and biofilm formation of pathogens causing ventilator-associated pneumonia using a novel polyamide/silver nanoparticle composite-coated endotracheal tube. Biofouling. 2020;36:292–307. DOI:10.1080/08927014.2020.1759041. DOI: https://doi.org/10.1080/08927014.2020.1759041
Rouzé A, Martin-Loeches I, Nseir S. Airway devices in ventilator-associated pneumonia pathogenesis and prevention. Clinics in Chest Medicine. 2018;39:775–83. DOI:10.1016/j.ccm.2018.08.001. DOI: https://doi.org/10.1016/j.ccm.2018.08.001
Biel MA, Sievert C, Usacheva M, Teichert M, Wedell E, Loebel N, et al. Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers in Surgery and Medicine. 2011;43:586–90. DOI:10.1002/lsm.21103. DOI: https://doi.org/10.1002/lsm.21103
Diaconu O, Siriopol I, Poloșanu LI, Grigoraș I. Endotracheal tube biofilm and its impact on the pathogenesis of ventilator-associated pneumonia. J Critt Care Medicin. 2018;4:50–5. DOI:10.2478/jccm-2018-0011. DOI: https://doi.org/10.2478/jccm-2018-0011
Dargahi Z, Hamad AA, Sheikh AF, Ahmad Khosravi N, Samei Fard S, Motahar M, et al. The biofilm formation and antibiotic resistance of bacterial profile from endotracheal tube of patients admitted to intensive care unit in southwest of Iran. PLOS ONE. 2022;17. DOI:10.1371/journal.pone.0277329. DOI: https://doi.org/10.1371/journal.pone.0277329
Dutt Y, Dhiman R, Singh T, Vibhuti A, Gupta A, Pandey RP, et al. The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches. Antibiotics. 2022;11:930. DOI:10.3390/antibiotics11070930. DOI: https://doi.org/10.3390/antibiotics11070930
Palmer LB. Ventilator-associated infection. Current Opinion in Pulmonary Medicine. 2009;15:230–5. DOI:10.1097/mcp.0b013e3283292650. DOI: https://doi.org/10.1097/MCP.0b013e3283292650
CLSI. Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
Dat VQ, Geskus RB, Wolbers M, Loan HT, Yen LM, Binh NT, et al. Continuous versus intermittent endotracheal cuff pressure control for the prevention of ventilator-associated respiratory infections in Vietnam: Study protocol for a randomised controlled trial. Trials. 2018;19. DOI:10.1186/s13063-018-2587-6. DOI: https://doi.org/10.1186/s13063-018-2587-6
Wu D, Wu C, Zhang S, Zhong Y. Risk factors of ventilator-associated pneumonia in critically III patients. Frontiers in Pharmacol. 2019;10. DOI:10.3389/fphar.2019.00482. DOI: https://doi.org/10.3389/fphar.2019.00482
Cairns S, Thomas JG, Hooper SJ, Wise MP, Frost PJ, Wilson MJ, et al. Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS ONE. 2011;6. DOI:10.1371/journal.pone.0014759. DOI: https://doi.org/10.1371/journal.pone.0014759
Mishra D, Shah D, Shah N, Prasad J, Gupta P, Agrawaal K. Study of microbiological and antibiotic sensitivity pattern of ventilator associated pneumonia (VAP) in ICU of a tertiary care hospital in Nepal. J Fam Med and Prim Care. 2020;9:6171. DOI:10.4103/jfmpc.jfmpc_1430_20. DOI: https://doi.org/10.4103/jfmpc.jfmpc_1430_20
Hadda V, Khilnani G, Dubey D, Sahu S, Sood S, Madan K, et al. Predictors and microbiology of ventilator-associated pneumonia among patients with exacerbation of chronic obstructive pulmonary disease. Lung India. 2019;36:506. DOI:10.4103/lungindia.lungindia_13_19. DOI: https://doi.org/10.4103/lungindia.lungindia_13_19
Chawla R. Epidemiology, etiology, and diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia in Asian countries. American Journal of Infection Control 2008;36. DOI:10.1016/j.ajic.2007.05.011. DOI: https://doi.org/10.1016/j.ajic.2007.05.011
Kelkar R, Sangale A, Bhat V, Biswas S. Microbiology of ventilator-associated pneumonia in a tertiary care cancer hospital. Indian Journal of Critical Care Medicine. 2021;25:421–8. DOI:10.5005/jp-journals-10071-23790. DOI: https://doi.org/10.5005/jp-journals-10071-23790
Košutová P, Mikolka P. Aspiration syndromes and associated lung injury: Incidence, pathophysiology and management. Physiological Research. 2021. DOI:10.33549/physiolres.934767. DOI: https://doi.org/10.33549/physiolres.934767
Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clinical Infectious Diseases. 2016;63. DOI:10.1093/cid/ciw353. DOI: https://doi.org/10.1093/cid/ciw353
Salehi M, Jafari S, Ghafouri L, et al. Ventilator-associated Pneumonia: Multidrug Resistant Acinetobacter vs. Extended Spectrum Beta Lactamase-producing Klebsiella. J Infect Dev Ctries. 2020;14(6):660-663. Published 2020 Jun 30. DOI:10.3855/jidc.12889 DOI: https://doi.org/10.3855/jidc.12889
Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne J-P, et al. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins. 2021;13:677. DOI:10.3390/toxins13100677. DOI: https://doi.org/10.3390/toxins13100677
Tilouche L, Ben Dhia R, Boughattas S, Ketata S, Bouallegue O, Chaouch C, et al. Staphylococcus aureus ventilator-associated pneumonia: A study of bacterio-epidemiological profile and virulence factors. Current Microbiology. 2021;78:2556–62. DOI:10.1007/s00284-021-02512-x. DOI: https://doi.org/10.1007/s00284-021-02512-x