Tony Hadibarata Bieby Voijant Tangahu


The adulteration of the environment by hazardous waste, such as heavy metals, nuclear wastes, hydrocarbons, pesticides and greenhouse gases is the major serious problem which need to be reduced. Common remediation technique such as physical, chemical and biological process are being applied. Chemical process can transform and change organic contaminant of interest which is not sufficient to clean the environment, while physical technique requires additional equipment. Thus, bioremediation exist as green approach to eliminate the hazardous waste in the environment. In this review, bioremediation is comprehensively presented. Remediation process types, challenges, limitations, mechanisms, and future suggestion has been elaborated to develop bioremediation technology for future prospect.


Download data is not yet available.


How to Cite
Hadibarata, T., & Voijant Tangahu, B. (2021). Green engineering principles and application: bioremediation. Environmental and Toxicology Management, 1(3), 1–8. https://doi.org/10.33086/etm.v1i3.2504
bioremediation, in-situ remediation, ex-situ remediation, green approach


Ainsworth, C. H., Paris, C. B., Perlin, N., Dornberger, L. N., Patterson III, W. F., Chancellor, E., Murawski, S., Hollander, D., Daly, K. and Romero, I. C., 2018. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PloS one. 13,

Atlas, R. and Bragg, J., 2009. Bioremediation of marine oil spills: when and when not – the Exxon Valdez experience. Microb. Biotechnol. 2, 213-221

Ayad, F., Matallah-Boutiba, A., Rouane–Hacene, O., Bouderbala, M. and Boutiba, Z., 2018. Tolerance of Trichoderma sp. to Heavy Metals and its Antifungal Activity in Algerian Marine Environment. J Pure Appl Microbiol. 12, 855-870

Ayangbenro, A. S. and Babalola, O. O., 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J. Environ Res Public Health. 14, 94

Azubuike, C. C., Chikere, C. B. and Okpokwasili, G. C., 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32, 180

Banik, S., Das, K., Islam, M. and Salimullah, M., 2014. Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Biomed Eng. 2, 1035

Bearman, P., 1979. A review of the environmental problems associated with the disposal of uranium tailings. Minerals Environ. 1, 64-74

Chen, H.-J., Tseng, D.-H. and Huang, S.-L., 2005. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresour. Technol. 96, 1483-1491

Churchill, P. F., Dudley, R. J. and Churchill, S. A., 1995. Surfactant-enhanced bioremediation. Waste Manage. 15, 371-377

Das, N. and Chandran, P., 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011,

Dellamatrice, P. M., Silva-Stenico, M. E., Moraes, L. A. B. d., Fiore, M. F. and Monteiro, R. T. R., 2017. Degradation of textile dyes by cyanobacteria. Braz. J. Microbiol. 48, 25-31

Dhall, P., Kumar, R. and Kumar, A., 2012. Biodegradation of sewage wastewater using autochthonous bacteria. The Sci. World J. 2012,

Dzionek, A., Wojcieszyńska, D. and Guzik, U., 2016. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 19, 28-36

Edwards, B. R., Reddy, C. M., Camilli, R., Carmichael, C. A., Longnecker, K. and Van Mooy, B. A., 2011. Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico. Environ. Res. Lett. 6, 035301

Fox, R. D., 1996. Physical/chemical treatment of organically contaminated soils and sediments. J Air Waste Manag Assoc. 46, 391-413

Ghorab, M. and Khalil, M., 2016. The Effect of Pesticides Pollution on Our Life and Environment. J Pollut Eff Cont 4: 159. doi: 10.4172/2375-4397.10001 59 Page 2 of 2 Volume 4• Issue 2• 1000159 J Pollut Eff Cont ISSN: 2375-4397 JPE, an open access journal 6. Khalil MS, Kenawy A, Ghorab MS, Mohammed EE (2012) Impact of microbia l agents on Meloidogyne incognita management and morphogenesis of tomato. J Biopest 5: 28-35. 7. EHC. 63, 1217-1223

Ghosh, A., Dastidar, M. G. and Sreekrishnan, T. R., 2017. Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int. Biodeterior. Biodegradation. 119, 448-460

Huang, X., Bo, X., Zhao, Y., Gao, B., Wang, Y., Sun, S., Yue, Q. and Li, Q., 2014. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresour. Technol. 165, 116-121

Ikhimiukor, O. and Nneji, L., 2013. The review of the use of microorganisms in biodegradation of crude oil spill: challenges and prospect. Sci Pub Res. 5, 155-163

Kaushik, P. and Malik, A., 2009. Fungal dye decolourization: Recent advances and future potential. Environ. Int. 35, 127-141

Kostka, J. E., Prakash, O., Overholt, W. A., Green, S. J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T. C. and Huettel, M., 2011. Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill. Appl. Environ. Microbiol. 77, 7962-7974

Kulshreshtha, S., Mathur, N. and Bhatnagar, P., 2014. Mushroom as a product and their role in mycoremediation. AMB Express. 4, 29

Kvenvolden, K. A. and Cooper, C. K., 2003. Natural seepage of crude oil into the marine environment. Geo-mar Lett. 23, 140-146

Lawrence, M. J., Stemberger, H. L., Zolderdo, A. J., Struthers, D. P. and Cooke, S. J., 2015. The effects of modern war and military activities on biodiversity and the environment. Environ. Rev. 23, 443-460

Li, Z. and Yang, P., 2018. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater. IOP Conf. Ser. Earth Environ. Sci. 113, 012185

Lim, K., Shukor, M. and Wasoh, H., 2014. Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res. Int. 2014,

Lin, S. H. and Kiang, C. D., 2003. Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. J. Hazard. Mater. 97, 159-171

Ma, J. and Zhai, G., 2012. Uranium Microbial Bioremediation and Challenges Ahead. J Bioremed Biodeg. 3, e125

Mahmoud, M. S., Mostafa, M. K., Mohamed, S. A., Sobhy, N. A. and Nasr, M., 2017. Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J. Environ. Chem. Eng. 5, 547-554

Mamane, A., Raherison, C., Tessier, J.-F., Baldi, I. and Bouvier, G., 2015. Environmental exposure to pesticides and respiratory health. Eur Respir Rev. 24, 462-473

Massoud, R., Hadiani, M. R., Hamzehlou, P. and Khosravi-Darani, K., 2019. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electron. J. Biotechnol. 37, 56-60

Mezzanotte, V., Castiglioni, F., Todeschini, R. and Pavan, M., 2003. Study on anaerobic and aerobic degradation of different non-ionic surfactants. Bioresour. Technol. 87, 87-91

Mohanty, G. and Mukherji, S., 2007. Effect of an emulsifying surfactant on diesel degradation by cultures exhibiting inducible cell surface hydrophobicity. J. Chem. Technol. Biotechnol. 82, 1004-1011

Mohanty, S., Jasmine, J. and Mukherji, S., 2013. Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. Biomed Res. Int. 2013,

Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. and Dhankher, O. P., 2016. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Front. Plant Sci. 7,

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L., 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Public Health. 4, 148

Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., Li, X., Zhang, K. and Zhu, T., 2017. Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chem. Eng. J. 326, 454-461

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. and Oh, S.-E., 2015. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. 54, 745-756

Rangel-Yagui, C. d. O., Pessoa-Jr, A. and Blankschtein, D., 2004. Two-phase aqueous micellar systems: an alternative method for protein purification. Braz. J. Chem. Eng. 21, 531-544

Ratnasari, A., Syafiuddin, A., Boopathy, R., Malik, S., Aamer Mehmood, M., Amalia, R., Dwi Prastyo, D. and Syamimi Zaidi, N., 2022a. Advances in pretreatment technology for handling the palm oil mill effluent: Challenges and prospects. Bioresour. Technol. 344, 126239

Ratnasari, A., Syafiuddin, A., Kueh, A. B. H., Suhartono, S. and Hadibarata, T., 2021a. Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae. WASP. 232, 242

Ratnasari, A., Syafiuddin, A., Zaidi, N. S., Hong Kueh, A. B., Hadibarata, T., Prastyo, D. D., Ravikumar, R. and Sathishkumar, P., 2022b. Bioremediation of micropollutants using living and non-living algae - Current perspectives and challenges. Env. Pol. 292, 118474

Ratnasari, A., Zaidi, N. S., Syafiuddin, A., Boopathy, R., Kueh, A. B. H., Amalia, R. and Prasetyo, D. D., 2021b. Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresour. Technol. 15, 100809

Robinson, T., McMullan, G., Marchant, R. and Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247-255

Rondon, H., El-Cheikh, W., Boluarte, I. A. R., Chang, C.-Y., Bagshaw, S., Farago, L., Jegatheesan, V. and Shu, L., 2015. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater. Bioresour. Technol. 183, 78-85

Shabbir, S., Faheem, M., Ali, N., Kerr, P. G. and Wu, Y., 2017. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Bioresour. Technol. 225, 395-401

Sheng, J. J., 2017. What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs? J. Pet. Sci. Eng. 159, 635-643

Tsezos, M., 1999. Biosorption of metals. The experience accumulated and the outlook for technology development. Elsevier

Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K.-H., Rai, B. N. and Singh, R. S., 2018. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 253, 355-367

Wang, J. and Chen, C., 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195-226

Weber, B. M., Walsh, P. and Harynuk, J. J., 2016. Determination of Hydrocarbon Group-Type of Diesel Fuels by Gas Chromatography with Vacuum Ultraviolet Detection. Anal. Chem. 88, 5809-5817

Zheng, X.-y., Wang, X.-y., Shen, Y.-h., Lu, X. and Wang, T.-s., 2017. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae—Crystal formation of chernikovite. Chemosphere. 175, 161-169

Most read articles by the same author(s)