Spent ground coffee – awaking the sustainability prospects


  • Ahmad Beng Hong Kueh Universiti Malaysia Sarawak




spent ground coffee, value engineering, waste


This paper outlines the threat of spent coffee ground (SCG) towards environmental health and some promising remedial efforts carried out by the scientific community working against it. To maintain human and earth wellbeing, massive biowastes left behind by the rising popularity of coffee drinking and its processing must be properly addressed. The recent waste to wealth value engineering efforts carried out to repurpose these biowastes are first presented. Some promising applications of SCGs in various prospective civil engineering areas alongside their favorable findings are then summarized. Attributed to beneficial properties as reported in existing studies, silica fume is recommended as the potential constituent to mix with SCG for future construction materials exploration in overcoming both the biowaste and industrial waste issues. 


Download data is not yet available.


Acchar, W., Avelino, K.A., Segadães, A.M., 2016. Granite waste and coffee husk ash synergistic effect on clay-based ceramics. Adv. Appl. Ceram. 115, 236–242.

Acchar, W., Dultra, E.J. V, 2013. Thermal analysis and X-ray diffraction of untreated coffee’s husk ash reject and its potential use in ceramics. J. Therm. Anal. Calorim. 111, 1331–1334

Akash, M.S.H., Rehman, K., Chen, S., 2014. Effects of coffee on type 2 diabetes mellitus. Nutrition 30, 755–763

Al-Dhabi, N.A., Ponmurugan, K., Jeganathan, P.M., 2017. Development and validation of ultrasound-assisted solidliquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 34, 206–213.

Andreola, F., Borghi, A., Pedrazzi, S., Allesina, G., Tartarini, P., Lancellotti, I., Barbieri, L., 2019. Spent Coffee Grounds in the Production of Lightweight Clay Ceramic Aggregates in View of Urban and Agricultural Sustainable Development. Materials (Basel). 12, 3581.

Arulrajah, A., Kua, T.-A., Horpibulsuk, S., Mirzababaei, M., Chinkulkijniwat, A., 2017. Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Constr. Build. Mater. 151, 18–27.

Arulrajah, A., Kua, T.-A., Phetchuay, C., Horpibulsuk, S.,Mahghoolpilehrood, F., Disfani, M.M., 2016. Spent coffee grounds–fly ash geopolymer used as an embankment structural fill material. J. Mater. Civ. Eng. 28, 4015197.

Arulrajah, A., Maghoolpilehrood, F., Disfani, M.M., Horpibulsuk, S., 2014. Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations. J. Clean. Prod. 72, 181–186.

Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I., 2014. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 7, 3493–3503.

Battestin, V., Macedo, G.A., 2007. Tannase production by Paecilomyces variotii. Bioresour. Technol. 98, 1832–1837.

Bekalo, S.A., Reinhardt, H.-W., 2010. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. 43, 1049–1060.

Buntić, A. V, Pavlović, M.D., Antonović, D.G., Šiler-Marinković, S.S., Dimitrijević-Branković, S.I., 2016. Utilization of spent coffee groundsfor isolation and stabilization of Paenibacillus chitinolyticus CKS1 cellulase by immobilization. Heliyon 2, e00146.

Ching, S.L., Yusoff, M.S., Aziz, H.A., Umar, M., 2011. Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron andor thophosphate. Desalination 279, 225–234. ECOR, 2019. https://www.greenbuildermedia.com/news/coffee-grounds-become-green-building-materials. Accessed 13 November 2019.

Eliche-Quesada, D., Martínez-García, C., Martínez-Cartas, M.L., Cotes-Palomino, M.T., Pérez-Villarejo, L., Cruz-Pérez, N., Corpas-Iglesias, F.A., 2011a. The use of different forms of waste in the manufacture of ceramic bricks. Appl. Clay Sci. 52, 270–276.

Eliche-Quesada, D., Pérez-Villarejo, L., Iglesias-Godino, F.J.,Martínez-García, C., Corpas-Iglesias, F.A., 2011b. Incorporation of coffee grounds into clay brick production. Adv. Appl. Ceram. 110, 225–232.

Fernandes, A.S., Mello, F.V.C., Thode Filho, S., Carpes, R.M., Honório, J.G., Marques, M.R.C., Felzenszwalb, I., Ferraz, E.R.A., 2017. Impacts of discarded coffee waste on human and environmental health. Ecotoxicol. Environ. Saf. 141, 30–36.

Gama, N., Silva, R., Carvalho, A.P.O., Ferreira, A., Barros-Timmons, A., 2017. Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee groundspolyol. Polym. Test. 62, 13–22.

Gomes, T., Pereira, J.A., Ramalhosa, E., Casal, S., Baptista, P., 2014. Effect of fresh and composted spent coffee grounds on lettuce growth, photosynthetic pigments and mineral composition. VII Congr. Ibérico Agroingeniería y Ciencias Hortic. SECH e SEAgIng, 1–5.

Gómez-Ruiz, J.Á., Leake, D.S., Ames, J.M., 2007. In vitro antioxidant activity of coffee compounds and their metabolites. J. Agric. Food Chem. 55, 6962–6969.

Gouvea, B.M., Torres, C., Franca, A.S., Oliveira, L.S., Oliveira, E.S., 2009. Feasibility of ethanol production from coffee husks. Biotechnol. Lett. 31, 1315–1319.

Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., Mechichi, T., 2012. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 88, 677–682.

Irawaty, W., Hindarso, H., ES, F., Mulyono, Y., Kurniawan, H., 2004. Utilization of Indonesian coffee pulp to make an activated carbon. Asian Pacific Confed. Chem. Eng. Congr. Progr. Abstr. Asian Pacific Confed. Chem. Eng. Congr. Progr. Abstr. The Society of Chemical Engineers, Japan, 452.

Jalkh, R., El-Rassy, H., Chehab, G.R., Abiad, M.G., 2018. Assessment of the physico-chemical properties of waste cooking oil and spent coffee grounds oil for potential use as asphalt binder rejuvenators. Waste and Biomass Valorization 9, 2125–2132.

Janissen, B., Huynh, T., 2018. Chemical composition and valueadding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 128, 110–117.

Jayachandra, T., Venugopal, C., Appaiah, K.A.A., 2011. Utilization of phytotoxic agro waste—Coffee cherry husk through pretreatment by the ascomycetes fungi Mycotypha for biomethanation. Energy Sustain. Dev. 15, 104–108.

Jia, H., Aw, W., Egashira, K., Takahashi, S., Aoyama, S., Saito, K., Kishimoto, Y., Kato, H., 2014. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr. 9, 389.

Kondamudi, N., Mohapatra, S.K., Misra, M., 2008. Spent coffee grounds as a versatile source of green energy. J. Agric. Food Chem. 56, 11757–11760.

Kua, T.-A., Arulrajah, A., Horpibulsuk, S., Du, Y.-J., Shen, S.-L., 2016. Strength assessment of spent coffee grounds-geopoly mercement utilizing slag and fly ash precursors. Constr. Build. Mater. 115, 565–575.

Kua, T.-A., Arulrajah, A., Horpibulsuk, S., Du, Y.-J., Suksiripat tanapong, C., 2017a. Engineering and environmental evaluation of spent coffee grounds stabilized with industrial byproducts as a road subgrade material. Clean Technol. Environ. Policy 19, 63–75.

Kua, T.-A., Arulrajah, A., Mohammadinia, A., Horpibulsuk, S., Mirzababaei, M., 2017b. Stiffness and deformation properties of spent coffee grounds based geopolymers. Constr. Build. Mater. 138, 79–87.

Lachheb, A., Allouhi, A., El Marhoune, M., Saadani, R., Kousksou, T., Jamil, A., Rahmoune, M., Oussouaddi, O., 2019. Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study. J. Clean. Prod. 209, 1411–1419.

Lee, S.-T., Lee, S.-H., 2010. Mechanical properties and durability of cement concrete incorporating silica fume. J. Korean Ceram. Soc. 47, 412–418.

Machado, C.M.M., Soccol, C.R., de Oliveira, B.H., Pandey, A., 2002. Gibberellic acid production by solid-state fermentation in coffee husk. Appl. Biochem. Biotechnol. 102, 179–191.

Machado, E.S.M., 2009. Reaproveitamento de resíduos da indústria do café como matériaprimapara a produção de etanol, Department of Biological Engineering, University of Minho.

Mangindaan, D., Lin, G.-Y., Kuo, C.-J., Chien, H.-W., 2020. Biosynthesis of silver nanoparticles as catalyst by spent coffee ground/recycled poly (ethylene terephthalate) composites. Food Bioprod. Process. 121, 193–201.

Martínez-Carrera, D., Aguilar, A., Martínez, W., Bonilla, M., Morales, P., Sobal, M., 2000. Commercial production and marketing of edible mushrooms cultivated on coffee pulp in Mexico. Coffee Biotechnol. Qual. Springer, 471–488.

Meckelburg, N., Pinto, K.C., Farah, A., Iorio, N.L.P., Pierro, V.S.S., Dos Santos, K.R.N., Maia, L.C., Antonio, A.G., 2014. Antibacterial effect of coffee: calcium concentration in a culture containing teeth/biofilm exposed to Coffea Canephora aqueous extract. Lett. Appl. Microbiol. 59, 342–347.

Murthy, P.S., Naidu, M.M., 2012a. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 66, 45–58.

Murthy, P.S., Naidu, M.M., 2012b. Recovery of phenolic antioxidants and functional compounds from coffee industry byproducts. Food Bioprocess Technol. 5, 897–903.

Mussatto, S.I., Machado, E.M.S., Martins, S., Teixeira, J.A., 2011. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 4, 661–672.

Mussatto, S.I., Teixeira, J.A., 2010. Increase in the fructooligosac charides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochem. Eng. J. 53, 154–157.

Nochaiya, T., Wongkeo, W., Chaipanich, A., 2010. Utilization of flyash with silica fume and properties of Portland cement–flyash–silica fume concrete. Fuel 89, 768–774.

Oliveira, W.E., Franca, A.S., Oliveira, L.S., Rocha, S.D., 2008. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J. Hazard. Mater. 152, 1073–1081.

Park, J., Kim, B., Lee, J.W., 2016. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour. Technol. 221, 55–60.

Pushpa, S.M., Manonmani, H.K., 2008. Bioconversion of coffee industry wastes with white rot fungus Pleurotus florida. Res. J. Environ. Sci. 2, 145–150.

Ricciardi, P., Torchia, F., Belloni, E., Lascaro, E., Buratti, C., 2017. Environmental characterisation of coffee chaff, a new recycled material for building applications. Constr. Build. Mater. 147, 185–193.

Roussos, S., De los Angeles Aquiahuatl, M., del Refugio Trejo-Hernández, M., Perraud, I.G., Favela, E., Ramakrishna, M., Raimbault, M., Viniegra-González, G., 1995. Biotechnological management of coffee pulp—isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl. Microbiol. Biotechnol. 42, 756–762.

Sadrmomtazi, A., Tahmouresi, B., Saradar, A., 2018. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr. Build. Mater. 162, 321–333.

Sathianarayanan, A., Khan, B., 2008. An eco-biological approach for resource recycling and pathogen (Rhizoctoniae solani Kuhn.) Suppression. J. Enviromental Prot. Sci. 2, 36–39.

Sena da Fonseca, B., Vilão, A., Galhano, C., Simão, J.A.R., 2014. Reusing coffee waste in manufacture of ceramics for construction. Adv. Appl. Ceram. 113, 159–166.

Sera, T., Soccol, C.R., Pandey, A., Roussos, S., 2013. Coffee Biotechnology and Quality: Proceedings of the 3rd International Seminar on Biotechnology in the Coffee Agro-Industry, Londrina, Brazil. Springer Science Business Media.

Shankaranand, V.S., Lonsane, B.K., 1994. Coffee husk: an inexpensive substrate for production of citric acid by Aspergillus niger in a solid-state fermentation system. World J. Microbiol. Biotechnol. 10, 165–168.

Siddique, R., 2011. Utilization of silica fume in concrete: Review of hardened properties. Resour. Conserv. Recycl. 55, 923–932.

Song, C.-H., Lee, C.-H., Huh, T.-L., Ahn, J.-H., Yang, H.-C., 1993. Development of substrates for the production of basidiocarps of Flammulina velutipes. Korean J. Mycol. 21, 212–216.

Syafiuddin, A., Fulazzaky, M.A., Salmiati, S., Kueh, A.B.H., Fulazzaky, M., Salim, M.R., 2020. Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review. Nanotechnol. Environ. Eng. 5, 1. https://doi.org/10.1007/s41204-019-0065-3

Syafiuddin, A., Salmiati, Hadibarata, T., Salim, M.R., Kueh, A.B.H., Sari, A.A., 2017. A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst. Eng. 40. https://doi.org/10.1007/s00449-017-1793-z

Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A.B.H., Salim, M.R., Zaini, M.A.A., 2018. Silver Nanoparticles in the Water Environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Sci. Rep. 8. https://doi.org/10.1038/s41598-018-19375-1

Tay, L T, Lee, Y.Y., Kueh, A.B.H., Lee, Y.H., 2021. Flatwise and wise compreedgession strengths of sandwich panel with silica aerogel mat. IOP Conf. Ser. Mater. Sci. Eng. IOP Publishing, 12001.

Tay, Lee Thin, Lee, Y.Y., Lee, Y.H., Kueh, A.B.H., 2021. Compresedgesive and Flexural Strengths of Mortar with Silica Aerogel Powder. Proc. Int. Conf. Civil, Offshore Environ. Eng. Springer, 493–500. https://doi.org/10.1007/978-981-33-6311-3_57

Torres-Mancera, M.T., Cordova-López, J., Rodríguez-Serrano, G., edgeRoussos, S., Ramírez-Coronel, M.A., Favela-Torres, E., Saucedo-Castañeda, G., 2011. Enzymatic extraction of hydroxycinnamic acids from coffee pulp. Food Technol. Biotechnol. 49, 369–373.

Velasco, P.M., Mendívil, M.A., Morales, M.P., Muñoz, L., 2016. Ecofired clay bricks made by adding spent coffee grounds: a sustainable way to improve buildings insulation. Mater. Struct. 49, 641–650.

Velázquez-Cedeño, M.A., Mata, G., Savoie, J.-M., 2002. Wastereducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J. Microbiol. Biotechnol. 18, 201–207.

Woldesenbet, A.G., Woldeyes, B., Chandravanshi, B.S., 2016. Bioethanol production from wet coffee processing waste in Ethiopia. Springerplus 5, 1–7.

Yun, B.Y., Cho, H.M., Kim, Y.U., Lee, S.C., Berardi, U., Kim, S., 2020. Circular reutilization of coffee waste for sound absorbing panels: A perspective on material recycling. Environ. Res. 184,




How to Cite

Kueh, A. B. H. (2021). Spent ground coffee – awaking the sustainability prospects. Environmental and Toxicology Management, 1(1), 1–6. https://doi.org/10.33086/etm.v1i1.2016