##plugins.themes.bootstrap3.article.main##

Muhammad Noor Hazwan Jusoh Chi Nam Yap Tony Hadibarata Hisyam Jusoh Mohamed Zuhaili Mohamed Najib

Abstract

Heavy metal (loids) in wastewater persists as a contagious and non-biodegradable environmental pollutant. With the ever rising of nanotechnologies in various field, there is a mass flux of heavy metal (loid)s being transmitted in many water sediments includes wastewater and rivers in which difficult to eliminate through conventional treatment processes. The introduction and development of nanomaterials have been increasingly utilized. Their high absorption capacity and unique properties in eliminating heavy metal pollutants and other nano pollutants have been extensively used in the remediation of inorganic pollutants. This review study illustrates the different types of nanomaterials that are utilized in various treatment process such as nano zero-valent iron (nZVI), carbon nanotubes and titanium dioxide nanoparticles (TiO2NPs). The mechanism of each nanomaterial and also its advantages and disadvantages are being portrayed. The identified factors affecting their efficiency in eliminating heavy metal and other inorganic pollutants are briefly described.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
Jusoh, M. N. H., Yap, C. N., Hadibarata, T., Jusoh, H., & Najib, M. Z. M. (2021). Nanomaterial for inorganic pollutant remediation. Environmental and Toxicology Management, 1(1), 18–25. https://doi.org/10.33086/etm.v1i1.2037
Section
Articles
Heavy metals, Inorganic pollutants, Nanomaterials, Polymer, Water treatment

References

Abdel Maksoud, M.I.A., Elgarahy, A.M., Farrell, C., Al-Muhtaseb, A.H., Rooney, D.W., Osman, A.I., 2020. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2019.213096

Adeleye, A.S., Keller, A.A., 2014. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Res. 49, 236–250. https://doi.org/10.1016/j.watres.2013.11.032

Al-Rashdi, K.S., Widatallah, H.M., Al Ma’Mari, F., Cespedes, O., Elzain, M., Al-Rawas, A., Gismelseed, A., Yousif, A., 2017. Structural and Mössbauer studies of nanocrystalline Mn2+- doped Fe3O4 particles. Hyperfine Interact. 239, 3. https://doi.org/10.1007/s10751-017-1476-9

Abdel Maksoud, M.I.A., Elgarahy, A.M., Farrell, C., Al-Muhtaseb, A.H., Rooney, D.W., Osman, A.I., 2020. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2019.213096

Adeleye, A.S., Keller, A.A., 2014. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Res. 49, 236–250. https://doi.org/10.1016/j.watres.2013.11.032

Al-Rashdi, K.S., Widatallah, H.M., Al Ma’Mari, F., Cespedes, O., Elzain, M., Al-Rawas, A., Gismelseed, A., Yousif, A., 2017. Structural and Mössbauer studies of nanocrystalline Mn2+- doped Fe3O4 particles. Hyperfine Interact. 239, 3. https://doi.org/10.1007/s10751-017-1476-9

Ali, I., Basheer, A.A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., Grachev, V., 2019. Graphene based adsorbents for remediation ofnoxious pollutants from wastewater. Environ. Int. https://doi.org/10.1016/j.envint.2019.03.029

Awad, A.M., Jalab, R., Benamor, A., Nasser, M.S., Ba-Abbad, M.M., El-Naas, M., Mohammad, A.W., 2020. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.112335

Cai, C., Zhao, M., Yu, Z., Rong, H., Zhang, C., 2019. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.01.180

Calderon, B., Fullana, A., 2015. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res. 83, 1–9. https://doi.org/10.1016/j.watres.2015.06.004

Chatterjee, N., Eom, H.J., Choi, J., 2014. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials 35, 1109–1127. https://doi.org/10.1016/j.biomaterials.2013.09.108

Chen, L., Zhou, L., Liu, Y., Deng, S., Wu, H., Wang, G., 2012. Toxicological effects of nanometer titanium dioxide (nanoTiO2) on Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 84, 155–162. https://doi.org/10.1016/j.ecoenv.2012.07.019

Crane, R.A., Scott, T.B., 2012. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2011.11.073

Cumbal, L., Greenleaf, J., Leun, D., SenGupta, A.K., 2003. Polymer supported inorganic nanoparticles: Characterization and environmental applications. React. Funct. Polym. 54, 167–180. https://doi.org/10.1016/S1381-5148(02)00192-X

Dai, H., 2002. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500, 218–241. https://doi.org/10.1016/S0039-6028(01)01558-8

Daneshfozoun, S., Abdullah, M.A., Abdullah, B., 2017. Prepar ation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind. Crops Prod. 105, 93–103. https://doi.org/10.1016/j.indcrop.2017.05.011

Esfandiyari, T., Nasirizadeh, N., Dehghani, M., Ehrampoosh, M.H., 2017. Graphene oxide based carbon composite as adsorbent for Hg removal: Preparation, characterization, kinetics and isotherm studies. Chinese J. Chem. Eng. 25, 1170–1175. https://doi.org/10.1016/j.cjche.2017.02.006

Etale, A., Tutu, H., Drake, D.C., 2016. The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)-and U(VI)-contaminated water by Acutodesmus sp. J. Appl. Phycol. 28, 251–260. https://doi.org/10.1007/s10811-015-0555-z

Fan, X., Wang, P., Wang, C., Hu, B., Wang, X., 2017. Lead accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea in sediments contaminated by TiO2 nanoparticles. Environ. Pollut. 231, 712–721. https://doi.org/10.1016/j.envpol.2017.08.080

Farré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D., 2009 Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393, 81–95. https://doi.org/10.1007/s00216-008-2458-1

Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., Kim, S.J., 2015. Removal of heavy metal ions from pharmaeffluents using graphene-oxide nanosorbents and study of their adsorption kinetics. J. Ind. Eng. Chem. 30, 14–19. https://doi.org/10.1016/j.jiec.2015.06.005

Guo, X., Mei, N., 2014. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. https://doi.org/10.1016/j.jfda.2014.01.009

He, M., Shi, H., Zhao, X., Yu, Y., Qu, B., 2013. Immobilization of Pb and Cd in Contaminated Soil Using Nano-Crystallite Hydroxyapatite. Procedia Environ. Sci. 18, 657–665. https://doi.org/10.1016/j.proenv.2013.04.090

Huang, X. yue, Ling, L., Zhang, W. xian, 2018. Nanoencapsulation of hexavalent chromium with nanoscale zero-valentiron: High resolution chemical mapping of the passivation layer. J. Environ. Sci. (China) 67, 4–13. https://doi.org/10.1016/j.jes.2018.01.029

Ihsanullah, Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A., 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2015.11.039

Jin, Y., Liu, W., Li, X. liang, Shen, S. gang, Liang, S. xuan, Liu, C., Shan, L., 2016. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol. Eng. 95, 25–29. https://doi.org/10.1016/j.ecoleng.2016.06.071

Jung, K.H., Kim, H.J., Kim, M.H., Seo, H., Lee, J.C., 2021. Superamphiphilic zwitterionic block copolymer surfactantassisted fabrication of polyamide thin-film composite membrane with highly enhanced desalination performance. J. Memb. Sci. 618, 118677. https://doi.org/10.1016/j.memsci.2020.118677

Kang, M., Lee, S.M., Kim, W., Lee, K.H., Kim, D.Y., 2019. Fubp1 supports the lactate-Akt-mTOR axis through the upregulation of Hk1 and Hk2. Biochem. Biophys. Res. Commun. 512, 93–99. https://doi.org/10.1016/j.bbrc.2019.03.005

Karthick Kannan, P., Shankar, P., Blackman, C., Chung, C.-H., 2019. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv. Mater. 31, 1803432. https://doi.org/https://doi.org/10.1002/adma.201803432

Lal, S., Singhal, A., Kumari, P., 2020. Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101276

Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., Wei, B., 2003. Competitive adsorption of Pb2+, Cu2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes, in: Carbon. Pergamon, pp. 2787–2792. https://doi.org/10.1016/S0008-6223(03)00392-0

Liu, R., Zhao, D., 2007. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res. 41, 2491–2502. https://doi.org/10.1016/j.watres.2007.03.026

Lu, C., Huang, Z., Liu, B., Liu, Y., Ying, Y., Liu, J., 2017. Poly-cytosine DNA as a High-Affinity Ligand for Inorganic Nanomaterials. Angew. Chemie Int. Ed. 56, 6208–6212. https://doi.org/https://doi.org/10.1002/anie.201702998

Mahalakshmi, M., Selvanayagam, S., Selvasekarapandian, S., Moniha, V., Manjuladevi, R., Sangeetha, P., 2019. Characterization of biopolymer electrolytes based on cellulose acetate with magnesium perchlorate (Mg(ClO4)2) for energy storage devices. J. Sci. Adv. Mater. Devices 4, 276–284. https://doi.org/10.1016/j.jsamd.2019.04.006

Mai, Z., Zhang, Huamin, Li, X., Xiao, S., Zhang, Hongzhang, 2011. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J. Power Sources 196, 5737–5741. https://doi.org/10.1016/j.jpowsour.2011.02.048

Marefat, A., Karbassi, A., Nasrabadi, T., 2019. The role of the estuarine zone on the river particulate toxicity. Environ. Sci. Pollut. Res. 26, 5038–5053. https://doi.org/10.1007/s11356-018-3932-8

Mobasherpour, I., Salahi, E., Pazouki, M., 2011. Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. J. Saudi Chem. Soc. 15, 105–112. https://doi.org/10.1016/j.jscs.2010.06.003

Nasir, A., Masood, F., Yasin, T., Hameed, A., 2019. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2019.06.052

Nizamuddin, S., Siddiqui, M.T.H., Mubarak, N.M., Baloch, H.A., Abdullah, E.C., Mazari, S.A., Griffin, G.J., Srinivasan, M.P., Tanksale, A., 2018. Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes From Wastewater, in: Nanoscale Materials in Water Purification. Elsevier, pp. 447–472. https://doi.org/10.1016/B978-0-12-813926-4.00023-9

Pang, H., Wu, Y., Huang, S., Ding, C., Li, S., Wang, Xiangxue, Yu, S., Chen, Z., Song, G., Wang, Xiangke, 2018. Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorg. Chem. Front. 5, 2657–2665. https://doi.org/10.1039/C8QI00779A

Park, H.J., Hong, S.Y., Chun, D.H., Kang, S.W., Park, J.C., Lee, D.S., 2019. A highly susceptive mesoporous hematite microcube architecture for sustainable P-type formaldehyde gas sensors. Sensors Actuators, B Chem. 287, 437–444. https://doi.org/10.1016/j.snb.2019.01.153

Patra, S., Roy, E., Madhuri, R., Sharma, P.K., 2017. A technique comes to life for security of life: the food contaminant sensors, in: Nanobiosensors. Elsevier, pp. 713–772. https://doi.org/10.1016/b978-0-12-804301-1.00017-5

Priya, K., Vijayakumar, M., Janani, B., 2020. Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. Int. J. Biol. Macromol. 149, 844–852. https://doi.org/10.1016/j.ijbiomac.2020.02.007

Rtimi, S., Dionysiou, D.D., Pillai, S.C., Kiwi, J., 2019. Advances in catalytic/photocatalytic bacterial inactivation by nano Agand Cu coated surfaces and medical devices. Appl. Catal. B Environ. https://doi.org/10.1016/j.apcatb.2018.07.025

Saad, A.H.A., Azzam, A.M., El-Wakeel, S.T., Mostafa, B.B., Abd El-latif, M.B., 2018. Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ. Nanotechnology, Monit. Manag. 9, 67–75. https://doi.org/10.1016/j.enmm.2017.12.004

Shahraki, S., Delarami, H.S., Khosravi, F., Nejat, R., 2020. Impro vingaddmargin[0.8cm]0cm the adsorption potential of chitosan for heavy metal ions using aromatic ringrich derivatives. J. Colloid Interface Sci. 576, 79–89. https://doi.org/10.1016/j.jcis.2020.05.006

Sheng, G., Alsaedi, A., Shammakh, W., Monaquel, S., Sheng, J., Wang, X., Li, H., Huang, Y., 2016. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon N. Y. 99, 123–130. https://doi.org/10.1016/j.carbon.2015.12.013

Shipley, H.J., Engates, K.E., Grover, V.A., 2013. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Environ. Sci. Pollut. Res. 20, 1727–1736. https://doi.org/10.1007/s11356-012-0984-z

Sierra, I., Morante-Zarcero, S., 2018. New advances in food sample preparation with nanomaterials for organic contaminants analysis by liquid chromatography, in: Nanomaterials in Chromatography: Current Trends in Chromatographic Research Technology and Techniques. Elsevier, pp. 118–154. https://doi.org/10.1016/B978-0-12-812792-6.00005-4

Silva, M.M., Pérez, D.V., Wasserman, J.C., Santos-Oliveira, R., Wasserman, M.A.V., 2017. The effect of nanohydroxyapatite on the behavior of metals in a microcosm simulating a lentic environment. Environ. Nanotechnology, Monit. Manag. 8, 219–227. https://doi.org/10.1016/j.enmm.2017.08.002

Sultan, A., Mohammad, F., 2017. Chemical sensing, thermal stability, electrochemistry and electrical conductivity of silver nanoparticles decorated and polypyrrole enwrapped boron nitride nanocomposite. Polymer (Guildf ). 113, 221–232. https://doi.org/10.1016/j.polymer.2017.02.074

Suman, Kardam, A., Gera, M., Jain, V.K., 2015. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ. Technol. 36, 706–714. https://doi.org/10.1080/09593330.2014.959066

Sumesh, E., Bootharaju, M.S., Anshup, Pradeep, T., 2011. A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater. 189, 450–457. https://doi.org/10.1016/j.jhazmat.2011.02.061

Sundararajan, M., K Ghosh, S., 2011. Designing Novel Materials through Functionalization of Carbon Nanotubes for Application in Nuclear Waste Management: Speciation of Uranyl. J. Phys. Chem. A 115, 6732–6737. https://doi.org/10.1021/jp203723t

Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma,L., 2018. On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery. J. Clean. Prod. 190, 200–210. https://doi.org/10.1016/j.jclepro.2018.04.151

Wan, J., Zeng, G., Huang, D., Hu, L., Xu, P., Huang, C., Deng, R., Xue, W., Lai, C., Zhou, C., Zheng, K., Ren, X., Gong, X., 2018. Rhamnolipid stabilized nano-chlorapatite: Synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment. J. Hazard. Mater. 343, 332–339. https://doi.org/10.1016/j.jhazmat.2017.09.053

Wang, D., Chu, L., Paradelo, M., Peijnenburg, W.J.G.M., Wang, Y., Zhou, D., 2011. Transport behavior of humic acidmodified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. J. Colloid Interface Sci. 360, 398–407. https://doi.org/10.1016/j.jcis.2011.04.064

Wang, Y., Zhang, H., Song, C., Gao, C., Zhu, G., 2020. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J. Memb. Sci. 614, 118496. https://doi.org/10.1016/j.memsci.2020.118496

Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., Huang, X., 2019. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 9. https://doi.org/10.3390/nano9030424

Yang, L., Wei, Z., Zhong, W., Cui, J., Wei, W., 2016. Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 490, 9–21. https://doi.org/10.1016/j.colsurfa.2015.11.039

Yang, S., Zou, Q., Wang, T., Zhang, L., 2019. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J. Memb. Sci. 569, 48–59. https://doi.org/10.1016/j.memsci.2018.09.068

Yirsaw, B.D., Megharaj, M., Chen, Z., Naidu, R., 2016. Environmental application and ecological significance of nanozero valent iron. J. Environ. Sci. (China). https://doi.org/10.1016/j.jes.2015.07.016

Zhang, R., Yu, S., Shi, W., Wang, W., Wang, X., Zhang, Z., Li, L., Zhang, B., Bao, X., 2017. A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4-dimethylaminopyridine (DMAP). J. Memb. Sci. 542, 68–80. https://doi.org/10.1016/j.memsci.2017.07.054

Zhang, X., Sun, H., Zhang, Z., Niu, Q., Chen, Y., Crittenden, J.C., 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67, 160–166. https://doi.org/10.1016/j.chemosphere.2006.09.003

Zhang, Y., Li, Z., 2017. Heavy metals removal using hydrogel-supported nanosized hydrous ferric oxide: Synthesis, characterization, and mechanism. Sci. Total Environ. 580, 776–786. https://doi.org/10.1016/j.scitotenv.2016.12.024

Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., Pan, B., 2016. Nanomaterials-enabled water and wastewater treatment. NanoImpact. https://doi.org/10.1016/j.impact.2016.09.004

Zhu, Y., Liu, X., Hu, Y., Wang, R., Chen, M., Wu, J., Wang, Y., Kang, S., Sun, Y., Zhu, M., 2019. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. https://doi.org/10.1016/j.envres.2019.04.014

Zhuang, C., Jiang, Y., Zhong, Y., Zhao, Y., Deng, Y., Yue, J., Wang, D., Jiao, S., Gao, H., Chen, H., Mu, H., 2018. Development and characterization of nano-bilayer films composed of polyvinyl alcohol, chitosan and alginate. Food Control 86, 191–199. https://doi.org/10.1016/j.foodcont.2017.11.024

Most read articles by the same author(s)