Nanomaterial for inorganic pollutant remediation
##plugins.themes.bootstrap3.article.main##
Abstract
Heavy metal (loids) in wastewater persists as a contagious and non-biodegradable environmental pollutant. With the ever rising of nanotechnologies in various field, there is a mass flux of heavy metal (loid)s being transmitted in many water sediments includes wastewater and rivers in which difficult to eliminate through conventional treatment processes. The introduction and development of nanomaterials have been increasingly utilized. Their high absorption capacity and unique properties in eliminating heavy metal pollutants and other nano pollutants have been extensively used in the remediation of inorganic pollutants. This review study illustrates the different types of nanomaterials that are utilized in various treatment process such as nano zero-valent iron (nZVI), carbon nanotubes and titanium dioxide nanoparticles (TiO2NPs). The mechanism of each nanomaterial and also its advantages and disadvantages are being portrayed. The identified factors affecting their efficiency in eliminating heavy metal and other inorganic pollutants are briefly described.
Downloads
##plugins.themes.bootstrap3.article.details##
Copyright (c) 2021 Muhammad Noor Hazwan Jusoh, Chi Nam Yap, Tony Hadibarata, Hisyam Jusoh, Mohamed Zuhaili Mohamed Najib
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Abdel Maksoud, M.I.A., Elgarahy, A.M., Farrell, C., Al-Muhtaseb, A.H., Rooney, D.W., Osman, A.I., 2020. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2019.213096
Adeleye, A.S., Keller, A.A., 2014. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Res. 49, 236–250. https://doi.org/10.1016/j.watres.2013.11.032
Al-Rashdi, K.S., Widatallah, H.M., Al Ma’Mari, F., Cespedes, O., Elzain, M., Al-Rawas, A., Gismelseed, A., Yousif, A., 2017. Structural and Mössbauer studies of nanocrystalline Mn2+- doped Fe3O4 particles. Hyperfine Interact. 239, 3. https://doi.org/10.1007/s10751-017-1476-9
Abdel Maksoud, M.I.A., Elgarahy, A.M., Farrell, C., Al-Muhtaseb, A.H., Rooney, D.W., Osman, A.I., 2020. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2019.213096
Adeleye, A.S., Keller, A.A., 2014. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Res. 49, 236–250. https://doi.org/10.1016/j.watres.2013.11.032
Al-Rashdi, K.S., Widatallah, H.M., Al Ma’Mari, F., Cespedes, O., Elzain, M., Al-Rawas, A., Gismelseed, A., Yousif, A., 2017. Structural and Mössbauer studies of nanocrystalline Mn2+- doped Fe3O4 particles. Hyperfine Interact. 239, 3. https://doi.org/10.1007/s10751-017-1476-9
Ali, I., Basheer, A.A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., Grachev, V., 2019. Graphene based adsorbents for remediation ofnoxious pollutants from wastewater. Environ. Int. https://doi.org/10.1016/j.envint.2019.03.029
Awad, A.M., Jalab, R., Benamor, A., Nasser, M.S., Ba-Abbad, M.M., El-Naas, M., Mohammad, A.W., 2020. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.112335
Cai, C., Zhao, M., Yu, Z., Rong, H., Zhang, C., 2019. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.01.180
Calderon, B., Fullana, A., 2015. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res. 83, 1–9. https://doi.org/10.1016/j.watres.2015.06.004
Chatterjee, N., Eom, H.J., Choi, J., 2014. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials 35, 1109–1127. https://doi.org/10.1016/j.biomaterials.2013.09.108
Chen, L., Zhou, L., Liu, Y., Deng, S., Wu, H., Wang, G., 2012. Toxicological effects of nanometer titanium dioxide (nanoTiO2) on Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 84, 155–162. https://doi.org/10.1016/j.ecoenv.2012.07.019
Crane, R.A., Scott, T.B., 2012. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2011.11.073
Cumbal, L., Greenleaf, J., Leun, D., SenGupta, A.K., 2003. Polymer supported inorganic nanoparticles: Characterization and environmental applications. React. Funct. Polym. 54, 167–180. https://doi.org/10.1016/S1381-5148(02)00192-X
Dai, H., 2002. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500, 218–241. https://doi.org/10.1016/S0039-6028(01)01558-8
Daneshfozoun, S., Abdullah, M.A., Abdullah, B., 2017. Prepar ation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind. Crops Prod. 105, 93–103. https://doi.org/10.1016/j.indcrop.2017.05.011
Esfandiyari, T., Nasirizadeh, N., Dehghani, M., Ehrampoosh, M.H., 2017. Graphene oxide based carbon composite as adsorbent for Hg removal: Preparation, characterization, kinetics and isotherm studies. Chinese J. Chem. Eng. 25, 1170–1175. https://doi.org/10.1016/j.cjche.2017.02.006
Etale, A., Tutu, H., Drake, D.C., 2016. The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)-and U(VI)-contaminated water by Acutodesmus sp. J. Appl. Phycol. 28, 251–260. https://doi.org/10.1007/s10811-015-0555-z
Fan, X., Wang, P., Wang, C., Hu, B., Wang, X., 2017. Lead accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea in sediments contaminated by TiO2 nanoparticles. Environ. Pollut. 231, 712–721. https://doi.org/10.1016/j.envpol.2017.08.080
Farré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D., 2009 Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393, 81–95. https://doi.org/10.1007/s00216-008-2458-1
Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., Kim, S.J., 2015. Removal of heavy metal ions from pharmaeffluents using graphene-oxide nanosorbents and study of their adsorption kinetics. J. Ind. Eng. Chem. 30, 14–19. https://doi.org/10.1016/j.jiec.2015.06.005
Guo, X., Mei, N., 2014. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. https://doi.org/10.1016/j.jfda.2014.01.009
He, M., Shi, H., Zhao, X., Yu, Y., Qu, B., 2013. Immobilization of Pb and Cd in Contaminated Soil Using Nano-Crystallite Hydroxyapatite. Procedia Environ. Sci. 18, 657–665. https://doi.org/10.1016/j.proenv.2013.04.090
Huang, X. yue, Ling, L., Zhang, W. xian, 2018. Nanoencapsulation of hexavalent chromium with nanoscale zero-valentiron: High resolution chemical mapping of the passivation layer. J. Environ. Sci. (China) 67, 4–13. https://doi.org/10.1016/j.jes.2018.01.029
Ihsanullah, Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A., 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2015.11.039
Jin, Y., Liu, W., Li, X. liang, Shen, S. gang, Liang, S. xuan, Liu, C., Shan, L., 2016. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol. Eng. 95, 25–29. https://doi.org/10.1016/j.ecoleng.2016.06.071
Jung, K.H., Kim, H.J., Kim, M.H., Seo, H., Lee, J.C., 2021. Superamphiphilic zwitterionic block copolymer surfactantassisted fabrication of polyamide thin-film composite membrane with highly enhanced desalination performance. J. Memb. Sci. 618, 118677. https://doi.org/10.1016/j.memsci.2020.118677
Kang, M., Lee, S.M., Kim, W., Lee, K.H., Kim, D.Y., 2019. Fubp1 supports the lactate-Akt-mTOR axis through the upregulation of Hk1 and Hk2. Biochem. Biophys. Res. Commun. 512, 93–99. https://doi.org/10.1016/j.bbrc.2019.03.005
Karthick Kannan, P., Shankar, P., Blackman, C., Chung, C.-H., 2019. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv. Mater. 31, 1803432. https://doi.org/https://doi.org/10.1002/adma.201803432
Lal, S., Singhal, A., Kumari, P., 2020. Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101276
Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., Wei, B., 2003. Competitive adsorption of Pb2+, Cu2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes, in: Carbon. Pergamon, pp. 2787–2792. https://doi.org/10.1016/S0008-6223(03)00392-0
Liu, R., Zhao, D., 2007. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res. 41, 2491–2502. https://doi.org/10.1016/j.watres.2007.03.026
Lu, C., Huang, Z., Liu, B., Liu, Y., Ying, Y., Liu, J., 2017. Poly-cytosine DNA as a High-Affinity Ligand for Inorganic Nanomaterials. Angew. Chemie Int. Ed. 56, 6208–6212. https://doi.org/https://doi.org/10.1002/anie.201702998
Mahalakshmi, M., Selvanayagam, S., Selvasekarapandian, S., Moniha, V., Manjuladevi, R., Sangeetha, P., 2019. Characterization of biopolymer electrolytes based on cellulose acetate with magnesium perchlorate (Mg(ClO4)2) for energy storage devices. J. Sci. Adv. Mater. Devices 4, 276–284. https://doi.org/10.1016/j.jsamd.2019.04.006
Mai, Z., Zhang, Huamin, Li, X., Xiao, S., Zhang, Hongzhang, 2011. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J. Power Sources 196, 5737–5741. https://doi.org/10.1016/j.jpowsour.2011.02.048
Marefat, A., Karbassi, A., Nasrabadi, T., 2019. The role of the estuarine zone on the river particulate toxicity. Environ. Sci. Pollut. Res. 26, 5038–5053. https://doi.org/10.1007/s11356-018-3932-8
Mobasherpour, I., Salahi, E., Pazouki, M., 2011. Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. J. Saudi Chem. Soc. 15, 105–112. https://doi.org/10.1016/j.jscs.2010.06.003
Nasir, A., Masood, F., Yasin, T., Hameed, A., 2019. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2019.06.052
Nizamuddin, S., Siddiqui, M.T.H., Mubarak, N.M., Baloch, H.A., Abdullah, E.C., Mazari, S.A., Griffin, G.J., Srinivasan, M.P., Tanksale, A., 2018. Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes From Wastewater, in: Nanoscale Materials in Water Purification. Elsevier, pp. 447–472. https://doi.org/10.1016/B978-0-12-813926-4.00023-9
Pang, H., Wu, Y., Huang, S., Ding, C., Li, S., Wang, Xiangxue, Yu, S., Chen, Z., Song, G., Wang, Xiangke, 2018. Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorg. Chem. Front. 5, 2657–2665. https://doi.org/10.1039/C8QI00779A
Park, H.J., Hong, S.Y., Chun, D.H., Kang, S.W., Park, J.C., Lee, D.S., 2019. A highly susceptive mesoporous hematite microcube architecture for sustainable P-type formaldehyde gas sensors. Sensors Actuators, B Chem. 287, 437–444. https://doi.org/10.1016/j.snb.2019.01.153
Patra, S., Roy, E., Madhuri, R., Sharma, P.K., 2017. A technique comes to life for security of life: the food contaminant sensors, in: Nanobiosensors. Elsevier, pp. 713–772. https://doi.org/10.1016/b978-0-12-804301-1.00017-5
Priya, K., Vijayakumar, M., Janani, B., 2020. Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. Int. J. Biol. Macromol. 149, 844–852. https://doi.org/10.1016/j.ijbiomac.2020.02.007
Rtimi, S., Dionysiou, D.D., Pillai, S.C., Kiwi, J., 2019. Advances in catalytic/photocatalytic bacterial inactivation by nano Agand Cu coated surfaces and medical devices. Appl. Catal. B Environ. https://doi.org/10.1016/j.apcatb.2018.07.025
Saad, A.H.A., Azzam, A.M., El-Wakeel, S.T., Mostafa, B.B., Abd El-latif, M.B., 2018. Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ. Nanotechnology, Monit. Manag. 9, 67–75. https://doi.org/10.1016/j.enmm.2017.12.004
Shahraki, S., Delarami, H.S., Khosravi, F., Nejat, R., 2020. Impro vingaddmargin[0.8cm]0cm the adsorption potential of chitosan for heavy metal ions using aromatic ringrich derivatives. J. Colloid Interface Sci. 576, 79–89. https://doi.org/10.1016/j.jcis.2020.05.006
Sheng, G., Alsaedi, A., Shammakh, W., Monaquel, S., Sheng, J., Wang, X., Li, H., Huang, Y., 2016. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon N. Y. 99, 123–130. https://doi.org/10.1016/j.carbon.2015.12.013
Shipley, H.J., Engates, K.E., Grover, V.A., 2013. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Environ. Sci. Pollut. Res. 20, 1727–1736. https://doi.org/10.1007/s11356-012-0984-z
Sierra, I., Morante-Zarcero, S., 2018. New advances in food sample preparation with nanomaterials for organic contaminants analysis by liquid chromatography, in: Nanomaterials in Chromatography: Current Trends in Chromatographic Research Technology and Techniques. Elsevier, pp. 118–154. https://doi.org/10.1016/B978-0-12-812792-6.00005-4
Silva, M.M., Pérez, D.V., Wasserman, J.C., Santos-Oliveira, R., Wasserman, M.A.V., 2017. The effect of nanohydroxyapatite on the behavior of metals in a microcosm simulating a lentic environment. Environ. Nanotechnology, Monit. Manag. 8, 219–227. https://doi.org/10.1016/j.enmm.2017.08.002
Sultan, A., Mohammad, F., 2017. Chemical sensing, thermal stability, electrochemistry and electrical conductivity of silver nanoparticles decorated and polypyrrole enwrapped boron nitride nanocomposite. Polymer (Guildf ). 113, 221–232. https://doi.org/10.1016/j.polymer.2017.02.074
Suman, Kardam, A., Gera, M., Jain, V.K., 2015. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ. Technol. 36, 706–714. https://doi.org/10.1080/09593330.2014.959066
Sumesh, E., Bootharaju, M.S., Anshup, Pradeep, T., 2011. A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater. 189, 450–457. https://doi.org/10.1016/j.jhazmat.2011.02.061
Sundararajan, M., K Ghosh, S., 2011. Designing Novel Materials through Functionalization of Carbon Nanotubes for Application in Nuclear Waste Management: Speciation of Uranyl. J. Phys. Chem. A 115, 6732–6737. https://doi.org/10.1021/jp203723t
Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma,L., 2018. On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery. J. Clean. Prod. 190, 200–210. https://doi.org/10.1016/j.jclepro.2018.04.151
Wan, J., Zeng, G., Huang, D., Hu, L., Xu, P., Huang, C., Deng, R., Xue, W., Lai, C., Zhou, C., Zheng, K., Ren, X., Gong, X., 2018. Rhamnolipid stabilized nano-chlorapatite: Synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment. J. Hazard. Mater. 343, 332–339. https://doi.org/10.1016/j.jhazmat.2017.09.053
Wang, D., Chu, L., Paradelo, M., Peijnenburg, W.J.G.M., Wang, Y., Zhou, D., 2011. Transport behavior of humic acidmodified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. J. Colloid Interface Sci. 360, 398–407. https://doi.org/10.1016/j.jcis.2011.04.064
Wang, Y., Zhang, H., Song, C., Gao, C., Zhu, G., 2020. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J. Memb. Sci. 614, 118496. https://doi.org/10.1016/j.memsci.2020.118496
Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., Huang, X., 2019. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 9. https://doi.org/10.3390/nano9030424
Yang, L., Wei, Z., Zhong, W., Cui, J., Wei, W., 2016. Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 490, 9–21. https://doi.org/10.1016/j.colsurfa.2015.11.039
Yang, S., Zou, Q., Wang, T., Zhang, L., 2019. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J. Memb. Sci. 569, 48–59. https://doi.org/10.1016/j.memsci.2018.09.068
Yirsaw, B.D., Megharaj, M., Chen, Z., Naidu, R., 2016. Environmental application and ecological significance of nanozero valent iron. J. Environ. Sci. (China). https://doi.org/10.1016/j.jes.2015.07.016
Zhang, R., Yu, S., Shi, W., Wang, W., Wang, X., Zhang, Z., Li, L., Zhang, B., Bao, X., 2017. A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4-dimethylaminopyridine (DMAP). J. Memb. Sci. 542, 68–80. https://doi.org/10.1016/j.memsci.2017.07.054
Zhang, X., Sun, H., Zhang, Z., Niu, Q., Chen, Y., Crittenden, J.C., 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67, 160–166. https://doi.org/10.1016/j.chemosphere.2006.09.003
Zhang, Y., Li, Z., 2017. Heavy metals removal using hydrogel-supported nanosized hydrous ferric oxide: Synthesis, characterization, and mechanism. Sci. Total Environ. 580, 776–786. https://doi.org/10.1016/j.scitotenv.2016.12.024
Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., Pan, B., 2016. Nanomaterials-enabled water and wastewater treatment. NanoImpact. https://doi.org/10.1016/j.impact.2016.09.004
Zhu, Y., Liu, X., Hu, Y., Wang, R., Chen, M., Wu, J., Wang, Y., Kang, S., Sun, Y., Zhu, M., 2019. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. https://doi.org/10.1016/j.envres.2019.04.014
Zhuang, C., Jiang, Y., Zhong, Y., Zhao, Y., Deng, Y., Yue, J., Wang, D., Jiao, S., Gao, H., Chen, H., Mu, H., 2018. Development and characterization of nano-bilayer films composed of polyvinyl alcohol, chitosan and alginate. Food Control 86, 191–199. https://doi.org/10.1016/j.foodcont.2017.11.024