Specific Primer Design of Leucine Rich Repeats and Guanylate Kinase Domain Containing (LRGUK) Genes in Type II Diabetes Mellitus Patients


Miftahul Mushlih
Siti Nur Maghfiroh Tis’iyyah
Chylen Setiyo Rini
Azizah Krismonita Sari


Diabetes Mellitus type II (DT2) is a disorder of insulin function (insulin resistance) caused by 2 factors, i.e. environmental and genetic factors. Previous studies have identified the presence of specific alleles that differentiate between DT2 and non-DT2 sufferers. Identification of the allele indicated leucine rich repeats and guanylate kinase domain containing (LRGUK) gene. The aim of this research was to design a specific primer to amplify LRGUK gene. The primer design was based on a 576 bp nucleotide base and added 100 bp in the 5'  and 100 bp in the 3' direction using NCBI-Primer BLAST. The primers produced were selected based on eight criteria’s. The results were validated with 6 samples of DT2 patients and visualized using agarose gel. The results of the analysis showed that the primers Forward 5'-TCCTACTCTGTGTCCTTCCTTG-3' and Reverse 5'-GTGGTGACAAGGAGG TTTGC-3' were able to amplify specifically with a length of 687 bp.


How to Cite
Mushlih, M. ., Tis’iyyah , S. N. M. ., Rini, C. S., & Sari, A. K. . (2022). Specific Primer Design of Leucine Rich Repeats and Guanylate Kinase Domain Containing (LRGUK) Genes in Type II Diabetes Mellitus Patients. Medical Technology and Public Health Journal, 6(2), 195–200. https://doi.org/10.33086/mtphj.v6i2.3476


  1. Kido Y. Gene–environment interaction in type 2 diabetes. Diabetol Int. 2017;8(1):7–13. DOI: https://doi.org/10.1007/s13340-016-0299-2
  2. Siewert S, Márquez F, Mendoza G, Fernández G, González I, Ojeda MS. Association of TCF7L2 Gene Polymorphisms with T2DM in the Population of Juana Koslay , San Luis Province , Argentina. 2015;1–10. DOI: https://doi.org/10.4236/oalib.1101419
  3. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract [Internet]. 2014;103(2):137–49. Available from: http://dx.doi.org/10.1016/j.diabres.2013.11.002 DOI: https://doi.org/10.1016/j.diabres.2013.11.002
  4. Mushlih M. Difference of Red Blood Cell Count (RBC) Levels in Diabetes Mellitus Type II with Ulcers and without Ulcers. J Ris Biol dan Apl. 2020;2(1):6–10. DOI: https://doi.org/10.26740/jrba.v2n1.p6-10
  5. Webber S. International Diabetes Federation. Vol. 102, Diabetes Research and Clinical Practice. 2013. 147–148 p. DOI: https://doi.org/10.1016/j.diabres.2013.10.013
  6. Barroso I, Luan J, Middelberg RPS, Harding AH, Franks PW, Jakes RW, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol. 2003;1(1):41–55. DOI: https://doi.org/10.1371/journal.pbio.0000020
  7. Han X, Luo Y, Ren Q, Zhang X, Wang F, Sun X, et al. WFS1 in Type 2 Diabetes in a Chinese population. BMC Med Genet. 2010;10–5.
  8. McCarthy MI. Genomics, Type 2 Diabetes, and Obesity. N Engl J Med. 2010;363(24):2339–50. DOI: https://doi.org/10.1056/NEJMra0906948
  9. Zahid RA, Sulaiman BK, Abd, Ahmed B. Molecular Investigation of Genetic Polymorphisms. Iraqi J Cancer Med Genet. 2011;(2):47–54.
  10. Kartikasari EW. Identifikasi gen pada alel positif penanda Diabetes Mellitus tipe II menggunakan marker primer D 20. Universitas muhammadiyah sidoarjo; 2021.
  11. Mushlih M, Sari FK, Amin HS, Iknan SA. Identification of molecular markers for type 2 Diabetes mellitus in Sidoarjo, Indonesia. J Teknol Lab. 2020;9(2):186–91. DOI: https://doi.org/10.29238/teknolabjournal.v9i2.235
  12. Mushlih M. BIOLOGI MOLEKULER “ Aplikasi Dasar di Dunia Kesehatan .” 2021.
  13. Mushlih M, Sari FK, Hadie DA, Ardiyansyah S. Genetic Polymorphism In Individuals With Type II Diabetes Mellitus Using PCR-RAPD In Sidoarjo District. 2021;02:153–9. DOI: https://doi.org/10.33086/jhs.v14i02.1866
  14. Ramkisson S, Pillay BJ, Sibanda W. African Journal of Primary Health Care and Family Medicine. African J Prim Heal Care Fam Med [Internet]. 2017;9(1):8. Available from: https://phcfm.org/index.php/phcfm/article/view/1405/2160 DOI: https://doi.org/10.4102/phcfm.v9i1.1405
  15. Laramie JM, Wilk JB, Williamson SL, Nagle MW, Latourelle JC, Tobin JE, et al. Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; The NHLBI Family Heart Study. BMC Med Genet. 2008;9:1–9. DOI: https://doi.org/10.1186/1471-2350-9-46
  16. Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: Understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One. 2015;10(5):1–21. DOI: https://doi.org/10.1371/journal.pone.0128122
  17. Chen SH, Lin CY, Cho CS, Lo CZ, Hsiung CA. Primer Design Assistant (PDA): A web-based primer design tool. Nucleic Acids Res. 2003;31(13):3751–4. DOI: https://doi.org/10.1093/nar/gkg560
  18. Asif S, Khan M, Waqar Arshad M, Shabbir MI. PCR Optimization for Beginners: A Step by Step Guide. Res Mol Med. 2021;9(2):81–102. DOI: https://doi.org/10.32598/rmm.9.2.1189.1
  19. Naroeni A, Arrasul LNP, Saraswati H, Iskandar AD. Optimization of in House Polymerase Chain Reaction for High Risk Human Papillomavirus (Hpv 18) E1 Genebased Detection. 2020;11:1767–75.