Specific Primer Design of Leucine Rich Repeats and Guanylate Kinase Domain Containing (LRGUK) Genes in Type II Diabetes Mellitus Patients

##plugins.themes.academic_pro.article.main##

Miftahul Mushlih
Siti Nur Maghfiroh Tis’iyyah
Chylen Setiyo Rini
Azizah Krismonita Sari

Abstract

Diabetes Mellitus type II (DT2) is a disorder of insulin function (insulin resistance) caused by 2 factors, i.e. environmental and genetic factors. Previous studies have identified the presence of specific alleles that differentiate between DT2 and non-DT2 sufferers. Identification of the allele indicated leucine rich repeats and guanylate kinase domain containing (LRGUK) gene. The aim of this research was to design a specific primer to amplify LRGUK gene. The primer design was based on a 576 bp nucleotide base and added 100 bp in the 5'  and 100 bp in the 3' direction using NCBI-Primer BLAST. The primers produced were selected based on eight criteria’s. The results were validated with 6 samples of DT2 patients and visualized using agarose gel. The results of the analysis showed that the primers Forward 5'-TCCTACTCTGTGTCCTTCCTTG-3' and Reverse 5'-GTGGTGACAAGGAGG TTTGC-3' were able to amplify specifically with a length of 687 bp.

##plugins.themes.academic_pro.article.details##

How to Cite
Mushlih, M. ., Tis’iyyah , S. N. M. ., Rini, C. S., & Sari, A. K. . (2022). Specific Primer Design of Leucine Rich Repeats and Guanylate Kinase Domain Containing (LRGUK) Genes in Type II Diabetes Mellitus Patients. Medical Technology and Public Health Journal, 6(2), 195–200. https://doi.org/10.33086/mtphj.v6i2.3476

References

  1. Kido Y. Gene–environment interaction in type 2 diabetes. Diabetol Int. 2017;8(1):7–13. DOI: https://doi.org/10.1007/s13340-016-0299-2
  2. Siewert S, Márquez F, Mendoza G, Fernández G, González I, Ojeda MS. Association of TCF7L2 Gene Polymorphisms with T2DM in the Population of Juana Koslay , San Luis Province , Argentina. 2015;1–10. DOI: https://doi.org/10.4236/oalib.1101419
  3. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract [Internet]. 2014;103(2):137–49. Available from: http://dx.doi.org/10.1016/j.diabres.2013.11.002 DOI: https://doi.org/10.1016/j.diabres.2013.11.002
  4. Mushlih M. Difference of Red Blood Cell Count (RBC) Levels in Diabetes Mellitus Type II with Ulcers and without Ulcers. J Ris Biol dan Apl. 2020;2(1):6–10. DOI: https://doi.org/10.26740/jrba.v2n1.p6-10
  5. Webber S. International Diabetes Federation. Vol. 102, Diabetes Research and Clinical Practice. 2013. 147–148 p. DOI: https://doi.org/10.1016/j.diabres.2013.10.013
  6. Barroso I, Luan J, Middelberg RPS, Harding AH, Franks PW, Jakes RW, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol. 2003;1(1):41–55. DOI: https://doi.org/10.1371/journal.pbio.0000020
  7. Han X, Luo Y, Ren Q, Zhang X, Wang F, Sun X, et al. WFS1 in Type 2 Diabetes in a Chinese population. BMC Med Genet. 2010;10–5.
  8. McCarthy MI. Genomics, Type 2 Diabetes, and Obesity. N Engl J Med. 2010;363(24):2339–50. DOI: https://doi.org/10.1056/NEJMra0906948
  9. Zahid RA, Sulaiman BK, Abd, Ahmed B. Molecular Investigation of Genetic Polymorphisms. Iraqi J Cancer Med Genet. 2011;(2):47–54.
  10. Kartikasari EW. Identifikasi gen pada alel positif penanda Diabetes Mellitus tipe II menggunakan marker primer D 20. Universitas muhammadiyah sidoarjo; 2021.
  11. Mushlih M, Sari FK, Amin HS, Iknan SA. Identification of molecular markers for type 2 Diabetes mellitus in Sidoarjo, Indonesia. J Teknol Lab. 2020;9(2):186–91. DOI: https://doi.org/10.29238/teknolabjournal.v9i2.235
  12. Mushlih M. BIOLOGI MOLEKULER “ Aplikasi Dasar di Dunia Kesehatan .” 2021.
  13. Mushlih M, Sari FK, Hadie DA, Ardiyansyah S. Genetic Polymorphism In Individuals With Type II Diabetes Mellitus Using PCR-RAPD In Sidoarjo District. 2021;02:153–9. DOI: https://doi.org/10.33086/jhs.v14i02.1866
  14. Ramkisson S, Pillay BJ, Sibanda W. African Journal of Primary Health Care and Family Medicine. African J Prim Heal Care Fam Med [Internet]. 2017;9(1):8. Available from: https://phcfm.org/index.php/phcfm/article/view/1405/2160 DOI: https://doi.org/10.4102/phcfm.v9i1.1405
  15. Laramie JM, Wilk JB, Williamson SL, Nagle MW, Latourelle JC, Tobin JE, et al. Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; The NHLBI Family Heart Study. BMC Med Genet. 2008;9:1–9. DOI: https://doi.org/10.1186/1471-2350-9-46
  16. Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: Understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One. 2015;10(5):1–21. DOI: https://doi.org/10.1371/journal.pone.0128122
  17. Chen SH, Lin CY, Cho CS, Lo CZ, Hsiung CA. Primer Design Assistant (PDA): A web-based primer design tool. Nucleic Acids Res. 2003;31(13):3751–4. DOI: https://doi.org/10.1093/nar/gkg560
  18. Asif S, Khan M, Waqar Arshad M, Shabbir MI. PCR Optimization for Beginners: A Step by Step Guide. Res Mol Med. 2021;9(2):81–102. DOI: https://doi.org/10.32598/rmm.9.2.1189.1
  19. Naroeni A, Arrasul LNP, Saraswati H, Iskandar AD. Optimization of in House Polymerase Chain Reaction for High Risk Human Papillomavirus (Hpv 18) E1 Genebased Detection. 2020;11:1767–75.