Main Article Content

Miftahul Mushlih Andika Aliviameita Puspitasari Puspitasari Ahmad Shobrun Jamil

Abstract

At the end of 2019, a new virus emerged from Wuhan, China named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The key to viral infection to host cells is the use of the ACE2 receptor. This study aimed to explore the potential of drugs in Annona muricata plant using the Insilico method. Compounds obtained from KNApSAcK Based on the analysis using SwissADME (Lipinski creteria)criteria. 22 compounds passed the selection. Eight ligands were identified as being able to change the conformation of the initial form of RBD and ACE2 attachment. Eight molecules are able to change the initial conformation, namely Asimilobine, Coreximine, (+)-Stepharine, Coclaurine, Norcorydine, N- Nornuciferinhe, methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinolin-5-ol, and Atherosperminine.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mushlih, M., Aliviameita, A. ., Puspitasari, P., & Jamil, A. S. (2022). POTENTIAL MOLECULES AGAINST COVID-19 FROM ANNONA MURICATA; AN IN-SILICO APPROACH. Medical Technology and Public Health Journal, 6(1), 11–20. https://doi.org/10.33086/mtphj.v6i1.3069
Section
Articles
booster covid-19, SARS-CoV-2, herbal, medicine

References

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44.

Plescia CB, David EA, Patra D, Sengupta R, Amiar S, Su Y, et al. SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles. J Biol Chem [Internet]. 2021;296(8):100103. Tersedia pada: https://doi.org/10.1074/jbc.RA120.016148

Yalcin HC, Sukumaran V, Al-Ruweidi MKAA, Shurbaji S. Do changes in ace-2 expression affect sars-cov-2 virulence and related complications: A closer look into membrane-bound and soluble forms. Int J Mol Sci. 2021;22(13).

Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10(June):1–9.

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol [Internet]. 2021;19(3):155–70. Tersedia pada: http://dx.doi.org/10.1038/s41579-020-00468-6

Akhodza Khiyaaroh, Atik Triratnawati. Jamu: Javanese Doping During the Covid-19 Pandemic. Indones J Med Anthropol. 2021;2(2):92–8.

Karcıoğlu O, Yüksel A, Baha A, Banu Er A, Esendağlı D, Gülhan PY, et al. COVID-19: The biggest threat of the 21st century: In respectful memory of the warriors all over the world. Turkish Thorac J. 2020;21(6):409–18.

Robert-gangneux F, Belaz S, Varlet-marie E, Bastien P. crossm Evaluation of Toxoplasma ELITe MGB Real-Time PCR Assay for Diagnosis of. 2017;55(5):1369–76.

Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol. 2020;11(December).

Antihemolytic E, Balderrama-carmona AP, Patricia N, Juan-carlos G, Chaidez-quiroz C, Felipe E. Antiviral, Antioxidant, and Antihemolytic Effect of Annona muricata L. Leaves Extracts. Plants. 2020;9:1–11.

Montalvo-go E, Coria-te A V, Obledo-va EN. Annona muricata : A comprehensive review on its traditional medicinal uses, phytochemicals , pharmacological activities , mechanisms of action and toxicity. 2018;662–91.

Daina A, Michielin O, Zoete V. SwissADME : a free web tool to evaluate pharmacokinetics , drug- likeness and medicinal chemistry friendliness of small molecules. Nat Publ Gr. 2017;(October 2016):1–13.

Modeling C, Sciences FORL. COMPREHENSIVE MODELING AND SIMULATIONS Datasheet BIOVIA DISCOVERY STUDIO.

Dallakyan S, Olson AJ. Chapter 19 Small-Molecule Library Screening by Docking with PyRx. 2015;1263:243–50.

Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.

Yim SK, Kim I, Warren B, Kim J, Jung K, Ku B. Antiviral activity of two marine carotenoids against sars-cov-2 virus entry in silico and in vitro. Int J Mol Sci. 2021;22(12).

El Hawary SS, Khattab AR, Marzouk HS, El Senousy AS, Alex MGA, Aly OM, et al. In silico identification of SARS-CoV-2 spike (S) protein-ACE2 complex inhibitors from eight Tecoma species and cultivars analyzed by LC-MS. RSC Adv. 2020;10(70):43103–8.

Cava C, Bertoli G, Castiglioni I. In Silico Discovery of Candidate Drugs against Covid-19. Viruses. 2020;1–14.

Joshi T, Joshi T, Sharma P, Mathpal S, Pundir H. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. 2020;4529–36.

Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of Small Molecule Inhibitors of the Deubiquitinating Activity of the SARS-CoV-2 Papain-Like Protease: in silico Molecular Docking Studies and in vitro Enzymatic Activity Assay. Front Chem. 2020;8(December):1–15.

Bassani D, Ragazzi E, Lapolla A, Sartore G, Moro S. Omicron Variant of SARS-CoV-2 Virus : In Silico Evaluation of the Possible Impact on People Affected by Diabetes Mellitus. 2022;13(March):1–8.

Ahkam AH, Hermanto FE, Alamsyah A, Aliyyah IH, Fatchiyah F. Virtual prediction of antiviral of ginger bioactive compounds against spike and MPro of SARS-CoV2 protein. J Biol Res. 2020;25(2):52–7.

Hu B, Zhou R, Li Z, Ouyang S, Li Z, Hu W, et al. Study of the binding mechanism of aptamer to palytoxin by docking and molecular simulation. Sci Rep. 2019;9(1):1–11.

Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM, Parikesit AA. Covid-19 in silico drug with zingiber officinale natural product compound library targeting the mpro protein. Makara J Sci. 2021;25(3):162–71.

Pandey A, Khan MK, Hamurcu M, Gezgin S. Natural Plant Products: A Less Focused Aspect for the COVID-19 Viral Outbreak. Vol. 11, Frontiers in Plant Science. Frontiers Media S.A.; 2020.