Main Article Content

I Gede Widhiantara https://orcid.org/0000-0003-0498-525X
Putu Angga Wiradana https://orcid.org/0000-0002-0139-8781
Anak Agung Ayu Putri Permatasari https://orcid.org/0000-0002-3608-2779
Ni Kadek Yunita Sari https://orcid.org/0009-0009-3059-3402
I Wayan Rosiana https://orcid.org/0000-0002-8440-2933
I Made Gde Sudyadnyana Sandhika https://orcid.org/0000-0002-6548-1293
Novaria Sari Dewi Panjaitan https://orcid.org/0000-0002-9503-7505

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a condition marked by excessive fat accumulation in the liver and poses a significant health challenge. The leaves of Blumea balsamifera and Sargassum aquifolium have been reported to have anti-atherogenic effects. This study aims to determine the effectiveness of B. balsamifera extract (BBLE) and S. aquifolium extract (SAE) in preventing and treating liver fat accumulation in Wistar rats induced by a high-cholesterol diet through the expression of the AMP-activated protein kinase (AMPK)/ Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor γ (PPARγ) pathway, and the leptin receptor. The experimental design of this study is laboratory-based, involving, 20 Wistar rats were fed a high-cholesterol diet over a period of 21 days. The rats were divided into four groups for the evaluation of BBLE and SAE effect: negative control (P0): induced with a high-cholesterol diet + distilled water, positive control (P1): induced with a high-cholesterol diet + simvastatin, P2: induced with a high-cholesterol diet + 4 mg/kg/bw BBLE, and P3: induced with a high-cholesterol diet + 4 mg/kg/bw BBLE and 4 mg/kg/bw SAE. The treatment duration extended over three months. Immunohistochemical analyses were performed on liver tissues to measure AMPK, SIRT1, PPARγ, and leptin receptor expression. The results indicated that leptin expression was lower in the BBLE+SAE group compared to the simvastatin group, and differences were significant between the BBLE and BBLE+SAE groups. No significant differences were noted in AMPK, SIRT1, and PPARγ expression between the simvastatin and BBLE+SAE groups (p≥0.05). In conclusion, BBLE and SAE effectively reduce liver lipid accumulation and enhance fat metabolism in hypercholesterolemic rats.

Downloads

Download data is not yet available.

Article Details

How to Cite
Widhiantara, I. G., Wiradana, P. A., Permatasari, A. A. A. P., Sari, N. K. Y., Rosiana, I. W., Sandhika, I. M. G. S. and Panjaitan, N. S. D. (2024) “Blumea balsamifera and Sargassum aquifolium extracts reduce fatty liver damage through lipid metabolism signalling pathways”, Indonesian Journal of Medical Laboratory Science and Technology, 6(2), pp. 131–142. doi: 10.33086/ijmlst.v6i2.5697.
Section
Articles
Blumea balsamifera, Sargassum aquifolium, Fatty liver disease, Hypercholesretolemia, Lipid metabolism

References

Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431

Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. https://doi.org/10.1002/hep.29466

Sepanlou SG, Safiri S, Bisignano C, Ikuta KS, Merat S, Saberifiroozi M, et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(3):245–66. https://doi.org/10.1016/S2468-1253(19)30349-

Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018;155(6):1828-1837.e2. https://doi.org/10.1053/j.gastro.2018.08.024

Araújo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018;38:47–51. https://doi.org/10.1111/liv.13643

Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Northfield Il). 2018;18(3):245–50. https://doi.org/10.7861/clinmedicine.18-3-245

Luo Z, Yang L, He J, Han Y, Rong X, Luo D, et al. Equol, a metabolite of gut microbiota, attenuates liver steatosis via the SIRT1/HNF4α pathway in NAFLD mice. J Funct Foods. 2023;107:105640. https://doi.org/10.1016/j.jff.2023.105640

Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, et al. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes, Metab Syndr Obes Targets Ther. 2021;14:67–83. https://doi.org/10.2147/DMSO.S281186

Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab. 2021;50:101238. https://doi.org/10.1016/j.molmet.2021.101238

Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786. https://doi.org/10.3390/ijms23020786

Minowa K, Rodriguez-Agudo D, Suzuki M, Muto Y, Hirai S, Wang Y, et al. Insulin dysregulation drives mitochondrial cholesterol metabolite accumulation: initiating hepatic toxicity in nonalcoholic fatty liver disease. J Lipid Res. 2023;64(5):100363. https://doi.org/10.1016/j.jlr.2023.100363

Kakiyama G, Marques D, Martin R, Takei H, Rodriguez-Agudo D, LaSalle SA, et al. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J Lipid Res. 2020;61(12):1629–44. https://doi.org/10.1194/jlr.RA120000924

Wang X, Zheng Z, Caviglia JM, Corey KE, Herfel TM, Cai B, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016;24(6):848–62. https://doi.org/10.1016/j.cmet.2016.09.016

Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536–50. https://doi.org/10.1038/nrm3841

Lin SC, Hardie DG. AMPK: Sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313. https://doi.org/10.1016/j.cmet.2017.10.009

Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-Mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull. 2018;41(7):985–93. https://doi.org/10.1248/bpb.b17-00724

Ha SK, Kim J, Chae C. Role of AMP-activated protein kinase and adiponectin during development of hepatic steatosis in high-fat diet-induced obesity in rats. J Comp Pathol. 2011;145(1):88–94. https://doi.org/10.1016/j.jcpa.2010.11.011

Poulsen L la C, Siersbæk M, Mandrup S. PPARs: Fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012;23(6):631–9. https://doi.org/10.1016/j.semcdb.2012.01.003

Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33. https://doi.org/10.1016/j.jhep.2014.10.039

Matsusue K, Aibara D, Hayafuchi R, Matsuo K, Takiguchi S, Gonzalez FJ, et al. Hepatic PPARγ and LXRα independently regulate lipid accumulation in the livers of genetically obese mice. FEBS Lett [Internet]. 2014 Jun 27;588(14):2277–81. https://doi.org/10.1016/j.febslet.2014.05.012

Rosiana IW, Widhiantara IG. Lumen and endotelium penile dorsal arteries hystology of wistar rats (Rattus novergicus) induced by high-fat diet. Metamorf J Biol Sci. 2020;7(1):73. https://doi.org/10.24843/metamorfosa.2020.v07.i01.p10

Widhiantara IG, Permatasari AAAP, Wiradana PA. The effect of sembung leaf extract (Blumea balsamifera) on the number and diameter of rats leydig cells induced by high-fat diet. Plant Arch. 2021;21:356–61. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.049

Widhiantara IG, Permatasari AAAP, Rosiana IW, Wiradana PA, Widiastini LP, Jawi IM. Antihypercholesterolemic and antioxidant effects of Blumea balsamifera L. leaf extracts to maintain luteinizing hormone secretion in rats induced by high-cholesterol diets. Indones Biomed J [Internet]. 2021 Dec 31;13(4):396–402. https://doi.org/10.18585/inabj.v13i4.1694

Widhiantara IG, Wiradana PA, Permatasari AAAP, Sari NKY, Rosiana IW, Astuti NPW, et al. Blumea balsamifera leaf extract maintain testosterone levels in hypercholesterolemic rats through antioxidant mechanism and upregulation of StAR gene expression. Biomed Pharmacol J. 2023;16(3):1463–72. https://doi.org/10.13005/bpj/2724

Carballeira Braña CB, Cerbule K, Senff P, Stolz IK. Towards environmental sustainability in marine finfish aquaculture. Front Mar Sci. 2021;8. https://doi.org/10.3389/fmars.2021.666662

Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591(7851):551–63. https://doi.org/10.1038/s41586-021-03308-6

Permatasari AAAP, Rosiana IW, Wiradana PA, Lestari MD, Widiastuti NK, Kurniawan SB, et al. Extraction and characterization of sodium alginate from three brown algae collected from Sanur Coastal Waters, Bali as biopolymer agent. Biodiversitas J Biol Divers. 2022;23(3):1655–63. https://doi.org/10.13057/biodiv/d230357

Widhiantara IG, Putri Permatasari AAA, Rosiana IW, Sari NKY, Sudyadnyana IMGS, Wiradana PA, et al. The role of biopolymers as candidates for promoting health agents: A review. J Appl Pharm Sci. 2022;13(1). https://doi.org/10.7324/JAPS.2023.130104-1

Rosian IW, Wiradana PA, Widhiantara IG, PutriPermatasari AAA, Sari NKY, Sandhika IMGS, et al. An overview brown macroalgae extract against fatty liver disease caused by metabolic dysfunction: animal models and evidence in human trials. Eur Chem Bull. 2023;12(5):5157–84. https://www.eurchembull.com/uploads/paper/a0fc3ea72168d4a5c082d5b3b3851867.pdf

Ministry of Health Republic of Indonesia. Farmakope herbal Indonesia Edisi II. 2017. 213–218 p. https://doi.org/10.1201/b12934-13

Isnansetyo A, Laili Lutfia FN, Nursid M, T T, Susidarti RA. Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacogn J. 2016;9(1):14–20. https://doi.org/10.5530/pj.2017.1.3

Yudiati E, Isnansetyo A, Murwantoko, Triyanto, Handayani CR. Alginate from Sargassum siliquosum simultaneously stimulates innate immunity, upregulates immune genes, and enhances resistance of pacific white shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV). Mar Biotechnol. 2019;21(4):503–14. https://doi.org/10.1007/s10126-019-09898-7

Safhi MM, Alam MF, Sivakumar SM, Anwer T. Hepatoprotective potential of Sargassum muticum against STZ-induced diabetic liver damage in wistar rats by inhibiting cytokines and the apoptosis pathway. Anal Cell Pathol. 2019;2019:1–8. https://doi.org/10.1155/2019/7958701

Omagari K, Koba C, Nagata A, Ngo LCT, Yamasaki M, Fukuda A, et al. Olive leaf powder prevents nonalcoholic steatohepatitis in Sprague–Dawley rats fed a high-fat and high-cholesterol diet. Clin Nutr Open Sci. 2021;37:47–59. https://doi.org/10.1016/j.nutos.2021.04.002

Liu P, Ying J, Guo X, Tang X, Zou W, Wang T, et al. An exploration of the effect of Chinese herbal compound on the occurrence and development of large intestine cancer and intestinal flora. Heliyon. 2024;10(1):e23533. https://doi.org/10.1016/j.heliyon.2023.e23533

Soares AF, Duarte JMN, Gruetter R. Increased hepatic fatty acid polyunsaturation precedes ectopic lipid deposition in the liver in adaptation to high-fat diets in mice. Magn Reson Mater Physics, Biol Med. 2018;31(2):341–54. https://doi.org/10.1007/s10334-017-0654-8

Yan L, Li J. The central nervous system control of energy homeostasis: High fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull. 2022;185:99–106. https://doi.org/10.1016/j.brainresbull.2022.04.015

Nakandakare-Maia ET, Siqueira JS, Ferron AJT, Vieira TA, Palacio TLN, Grandini NA, et al. Treatment with bergamot (Citrus bergamia) leaves extract attenuates leptin resistance in obese rats. Mol Cell Endocrinol. 2023;566–567:111908. https://doi.org/10.1016/j.mce.2023.111908

Lee S-Y, Kim M-H, Bae C-S, Choi HJ, Ma EH, Park S-J, et al. Unripe Citrus unshiu peel inhibited pre-adipocyte’s differentiation via leptin-PPARγ/FAS pathway and pro-inflammatory cytokines’ release. J Funct Foods. 2023;107:105681. https://doi.org/10.1016/j.jff.2023.105681

Sanger G, Wonggo D, Taher N, Dotulong V, Setiawan AA, Permatasari HK, et al. Green seaweed Caulerpa racemosa - Chemical constituents, cytotoxicity in breast cancer cells and molecular docking simulation. J Agric Food Res. 2023;12:100621. https://doi.org/10.1016/j.jafr.2023.100621

Kang N, Oh S, Kim S-Y, Ahn H, Son M, Heo S-J, et al. Anti-obesity effects of Ishophloroglucin A from the brown seaweed Ishige okamurae (Yendo) via regulation of leptin signal in ob/ob mice. Algal Res. 2022;61:102533. https://doi.org/10.1016/j.algal.2021.102533

Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. https://doi.org/10.1038/nrm.2017.95

Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: The anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci. 2020;7:76. https://doi.org/10.3389/fmolb.2020.00076

Woonnoi W, Suttithumsatid W, Muneerungsee N, Saetan J, Tanasawet S, Sukketsiri W. Sangyod rice extract inhibits adipocyte growth and differentiation via mTOR, Akt, and AMPK pathways. J Funct Foods. 2023;111:105913. https://doi.org/10.1016/j.jff.2023.105913

Ganjayi MS, Karunakaran RS, Gandham S, Meriga B. Quercetin-3-O-rutinoside from Moringa oleifera downregulates adipogenesis and lipid accumulation and improves glucose uptake by activation of AMPK/Glut-4 in 3T3-L1 cells. Rev Bras Farmacogn. 2023;33(2):334–43. https://doi.org/10.1007/s43450-022-00352-9

Ko S-C, Lee M, Lee J-H, Lee S-H, Lim Y, Jeon Y-J. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes. Environ Toxicol Pharmacol. 2013;36(3):1253–60. https://doi.org/10.1016/j.etap.2013.10.011

Beppu F, Hosokawa M, Niwano Y, Miyashita K. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A y mice. Lipids Health Dis. 2012;11(1):112. https://doi.org/10.1186/1476-511X-11-112

Liu Y, Li Y, Wang J, Yang L, Yu X, Huang P, et al. Salvia-Nelumbinis naturalis improves lipid metabolism of NAFLD by regulating the SIRT1/AMPK signaling pathway. BMC Complement Med Ther. 2022;22(1):213. https://doi.org/10.1186/s12906-022-03697-9

Yunkun Z, Rong Y, Lin L, Wenli L, Changqing L, Yu P, et al. Medication rule and mechanism of traditional Chinese medicine in treating metabolism-associated fatty liver disease based on bioinformatics technology. Digit Chinese Med. 2023;6(3):257–71. https://doi.org/10.1016/j.dcmed.2023.10.002

Zhang J, Hu C, Li X, Liang L, Zhang M, Chen B, et al. Protective effect of dihydrokaempferol on acetaminophen-induced liver injury by activating the SIRT1 pathway. Am J Chin Med. 2021;49(03):705–18. https://doi.org/10.1142/S0192415X21500324

Marion-Letellier R, Savoye G, Ghosh S. Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol. 2016;785:44–9. https://doi.org/10.1016/j.ejphar.2015.11.004

Janani C, Ranjitha Kumari BD. PPAR gamma gene – A review. Diabetes Metab Syndr Clin Res Rev. 2015;9(1):46–50. https://doi.org/10.1016/j.dsx.2014.09.015

Balkrishna A, Sharma S, Maity M, Tomer M, Singh R, Gohel V, et al. Divya-WeightGo combined with moderate aerobic exercise remediates adiposopathy, insulin resistance, serum biomarkers, and hepatic lipid accumulation in high-fat diet-induced obese mice. Biomed Pharmacother. 2023;163:114785. https://doi.org/10.1016/j.biopha.2023.114785

Hammad SS, Jones PJ. Dietary fatty acid composition modulates obesity and interacts with obesity‐related genes. Lipids. 2017;52(10):803–22. https://doi.org/10.1007/s11745-017-4291-9

I Gede Widhiantara, Universitas Dhyana Pura

Research Group of Biological Health, Study Program of Biology, Faculty of Health and Science, Universitas Dhyana Pura, North Kuta, Indonesia

Putu Angga Wiradana, Universitas Dhyana Pura

Research Group of Biological Health, Study Program of Biology, Faculty of Health and Science, Universitas Dhyana Pura, North Kuta, Indonesia

Anak Agung Ayu Putri Permatasari, Universitas Dhyana Pura

Research Group of Biological Health, Study Program of Biology, Faculty of Health and Science, Universitas Dhyana Pura, North Kuta, Indonesia

Ni Kadek Yunita Sari, Universitas Dhyana Pura

Research Group of Biological Health, Study Program of Biology, Faculty of Health and Science, Universitas Dhyana Pura, North Kuta, Indonesia

I Wayan Rosiana, Universitas Dhyana Pura

Research Group of Biological Health, Study Program of Biology, Faculty of Health and Science, Universitas Dhyana Pura, North Kuta, Indonesia

I Made Gde Sudyadnyana Sandhika, Universitas Dhyana Pura

Research Group of Biological Health, Study Program of Biology, Faculty of Health and Science, Universitas Dhyana Pura, North Kuta, Indonesia

Novaria Sari Dewi Panjaitan, National Research and Innovation Agency (BRIN)

Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Bogor, Indonesia