Blumea balsamifera and Sargassum aquifolium extracts reduce fatty liver damage through lipid metabolism signalling pathways
Main Article Content
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition marked by excessive fat accumulation in the liver and poses a significant health challenge. The leaves of Blumea balsamifera and Sargassum aquifolium have been reported to have anti-atherogenic effects. This study aims to determine the effectiveness of B. balsamifera extract (BBLE) and S. aquifolium extract (SAE) in preventing and treating liver fat accumulation in Wistar rats induced by a high-cholesterol diet through the expression of the AMP-activated protein kinase (AMPK)/ Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor γ (PPARγ) pathway, and the leptin receptor. The experimental design of this study is laboratory-based, involving, 20 Wistar rats were fed a high-cholesterol diet over a period of 21 days. The rats were divided into four groups for the evaluation of BBLE and SAE effect: negative control (P0): induced with a high-cholesterol diet + distilled water, positive control (P1): induced with a high-cholesterol diet + simvastatin, P2: induced with a high-cholesterol diet + 4 mg/kg/bw BBLE, and P3: induced with a high-cholesterol diet + 4 mg/kg/bw BBLE and 4 mg/kg/bw SAE. The treatment duration extended over three months. Immunohistochemical analyses were performed on liver tissues to measure AMPK, SIRT1, PPARγ, and leptin receptor expression. The results indicated that leptin expression was lower in the BBLE+SAE group compared to the simvastatin group, and differences were significant between the BBLE and BBLE+SAE groups. No significant differences were noted in AMPK, SIRT1, and PPARγ expression between the simvastatin and BBLE+SAE groups (p≥0.05). In conclusion, BBLE and SAE effectively reduce liver lipid accumulation and enhance fat metabolism in hypercholesterolemic rats.
Downloads
Article Details
Copyright (c) 2024 I Gede Widhiantara, Putu Angga Wiradana, Anak Agung Ayu Putri Permatasari, Ni Kadek Yunita Sari, I Wayan Rosiana, I Made Gde Sudyadnyana Sandhika, Novaria Sari Dewi Panjaitan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431
Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. https://doi.org/10.1002/hep.29466
Sepanlou SG, Safiri S, Bisignano C, Ikuta KS, Merat S, Saberifiroozi M, et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(3):245–66. https://doi.org/10.1016/S2468-1253(19)30349-
Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018;155(6):1828-1837.e2. https://doi.org/10.1053/j.gastro.2018.08.024
Araújo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018;38:47–51. https://doi.org/10.1111/liv.13643
Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Northfield Il). 2018;18(3):245–50. https://doi.org/10.7861/clinmedicine.18-3-245
Luo Z, Yang L, He J, Han Y, Rong X, Luo D, et al. Equol, a metabolite of gut microbiota, attenuates liver steatosis via the SIRT1/HNF4α pathway in NAFLD mice. J Funct Foods. 2023;107:105640. https://doi.org/10.1016/j.jff.2023.105640
Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, et al. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes, Metab Syndr Obes Targets Ther. 2021;14:67–83. https://doi.org/10.2147/DMSO.S281186
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab. 2021;50:101238. https://doi.org/10.1016/j.molmet.2021.101238
Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786. https://doi.org/10.3390/ijms23020786
Minowa K, Rodriguez-Agudo D, Suzuki M, Muto Y, Hirai S, Wang Y, et al. Insulin dysregulation drives mitochondrial cholesterol metabolite accumulation: initiating hepatic toxicity in nonalcoholic fatty liver disease. J Lipid Res. 2023;64(5):100363. https://doi.org/10.1016/j.jlr.2023.100363
Kakiyama G, Marques D, Martin R, Takei H, Rodriguez-Agudo D, LaSalle SA, et al. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J Lipid Res. 2020;61(12):1629–44. https://doi.org/10.1194/jlr.RA120000924
Wang X, Zheng Z, Caviglia JM, Corey KE, Herfel TM, Cai B, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016;24(6):848–62. https://doi.org/10.1016/j.cmet.2016.09.016
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536–50. https://doi.org/10.1038/nrm3841
Lin SC, Hardie DG. AMPK: Sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313. https://doi.org/10.1016/j.cmet.2017.10.009
Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-Mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull. 2018;41(7):985–93. https://doi.org/10.1248/bpb.b17-00724
Ha SK, Kim J, Chae C. Role of AMP-activated protein kinase and adiponectin during development of hepatic steatosis in high-fat diet-induced obesity in rats. J Comp Pathol. 2011;145(1):88–94. https://doi.org/10.1016/j.jcpa.2010.11.011
Poulsen L la C, Siersbæk M, Mandrup S. PPARs: Fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012;23(6):631–9. https://doi.org/10.1016/j.semcdb.2012.01.003
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33. https://doi.org/10.1016/j.jhep.2014.10.039
Matsusue K, Aibara D, Hayafuchi R, Matsuo K, Takiguchi S, Gonzalez FJ, et al. Hepatic PPARγ and LXRα independently regulate lipid accumulation in the livers of genetically obese mice. FEBS Lett [Internet]. 2014 Jun 27;588(14):2277–81. https://doi.org/10.1016/j.febslet.2014.05.012
Rosiana IW, Widhiantara IG. Lumen and endotelium penile dorsal arteries hystology of wistar rats (Rattus novergicus) induced by high-fat diet. Metamorf J Biol Sci. 2020;7(1):73. https://doi.org/10.24843/metamorfosa.2020.v07.i01.p10
Widhiantara IG, Permatasari AAAP, Wiradana PA. The effect of sembung leaf extract (Blumea balsamifera) on the number and diameter of rats leydig cells induced by high-fat diet. Plant Arch. 2021;21:356–61. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.049
Widhiantara IG, Permatasari AAAP, Rosiana IW, Wiradana PA, Widiastini LP, Jawi IM. Antihypercholesterolemic and antioxidant effects of Blumea balsamifera L. leaf extracts to maintain luteinizing hormone secretion in rats induced by high-cholesterol diets. Indones Biomed J [Internet]. 2021 Dec 31;13(4):396–402. https://doi.org/10.18585/inabj.v13i4.1694
Widhiantara IG, Wiradana PA, Permatasari AAAP, Sari NKY, Rosiana IW, Astuti NPW, et al. Blumea balsamifera leaf extract maintain testosterone levels in hypercholesterolemic rats through antioxidant mechanism and upregulation of StAR gene expression. Biomed Pharmacol J. 2023;16(3):1463–72. https://doi.org/10.13005/bpj/2724
Carballeira Braña CB, Cerbule K, Senff P, Stolz IK. Towards environmental sustainability in marine finfish aquaculture. Front Mar Sci. 2021;8. https://doi.org/10.3389/fmars.2021.666662
Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591(7851):551–63. https://doi.org/10.1038/s41586-021-03308-6
Permatasari AAAP, Rosiana IW, Wiradana PA, Lestari MD, Widiastuti NK, Kurniawan SB, et al. Extraction and characterization of sodium alginate from three brown algae collected from Sanur Coastal Waters, Bali as biopolymer agent. Biodiversitas J Biol Divers. 2022;23(3):1655–63. https://doi.org/10.13057/biodiv/d230357
Widhiantara IG, Putri Permatasari AAA, Rosiana IW, Sari NKY, Sudyadnyana IMGS, Wiradana PA, et al. The role of biopolymers as candidates for promoting health agents: A review. J Appl Pharm Sci. 2022;13(1). https://doi.org/10.7324/JAPS.2023.130104-1
Rosian IW, Wiradana PA, Widhiantara IG, PutriPermatasari AAA, Sari NKY, Sandhika IMGS, et al. An overview brown macroalgae extract against fatty liver disease caused by metabolic dysfunction: animal models and evidence in human trials. Eur Chem Bull. 2023;12(5):5157–84. https://www.eurchembull.com/uploads/paper/a0fc3ea72168d4a5c082d5b3b3851867.pdf
Ministry of Health Republic of Indonesia. Farmakope herbal Indonesia Edisi II. 2017. 213–218 p. https://doi.org/10.1201/b12934-13
Isnansetyo A, Laili Lutfia FN, Nursid M, T T, Susidarti RA. Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacogn J. 2016;9(1):14–20. https://doi.org/10.5530/pj.2017.1.3
Yudiati E, Isnansetyo A, Murwantoko, Triyanto, Handayani CR. Alginate from Sargassum siliquosum simultaneously stimulates innate immunity, upregulates immune genes, and enhances resistance of pacific white shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV). Mar Biotechnol. 2019;21(4):503–14. https://doi.org/10.1007/s10126-019-09898-7
Safhi MM, Alam MF, Sivakumar SM, Anwer T. Hepatoprotective potential of Sargassum muticum against STZ-induced diabetic liver damage in wistar rats by inhibiting cytokines and the apoptosis pathway. Anal Cell Pathol. 2019;2019:1–8. https://doi.org/10.1155/2019/7958701
Omagari K, Koba C, Nagata A, Ngo LCT, Yamasaki M, Fukuda A, et al. Olive leaf powder prevents nonalcoholic steatohepatitis in Sprague–Dawley rats fed a high-fat and high-cholesterol diet. Clin Nutr Open Sci. 2021;37:47–59. https://doi.org/10.1016/j.nutos.2021.04.002
Liu P, Ying J, Guo X, Tang X, Zou W, Wang T, et al. An exploration of the effect of Chinese herbal compound on the occurrence and development of large intestine cancer and intestinal flora. Heliyon. 2024;10(1):e23533. https://doi.org/10.1016/j.heliyon.2023.e23533
Soares AF, Duarte JMN, Gruetter R. Increased hepatic fatty acid polyunsaturation precedes ectopic lipid deposition in the liver in adaptation to high-fat diets in mice. Magn Reson Mater Physics, Biol Med. 2018;31(2):341–54. https://doi.org/10.1007/s10334-017-0654-8
Yan L, Li J. The central nervous system control of energy homeostasis: High fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull. 2022;185:99–106. https://doi.org/10.1016/j.brainresbull.2022.04.015
Nakandakare-Maia ET, Siqueira JS, Ferron AJT, Vieira TA, Palacio TLN, Grandini NA, et al. Treatment with bergamot (Citrus bergamia) leaves extract attenuates leptin resistance in obese rats. Mol Cell Endocrinol. 2023;566–567:111908. https://doi.org/10.1016/j.mce.2023.111908
Lee S-Y, Kim M-H, Bae C-S, Choi HJ, Ma EH, Park S-J, et al. Unripe Citrus unshiu peel inhibited pre-adipocyte’s differentiation via leptin-PPARγ/FAS pathway and pro-inflammatory cytokines’ release. J Funct Foods. 2023;107:105681. https://doi.org/10.1016/j.jff.2023.105681
Sanger G, Wonggo D, Taher N, Dotulong V, Setiawan AA, Permatasari HK, et al. Green seaweed Caulerpa racemosa - Chemical constituents, cytotoxicity in breast cancer cells and molecular docking simulation. J Agric Food Res. 2023;12:100621. https://doi.org/10.1016/j.jafr.2023.100621
Kang N, Oh S, Kim S-Y, Ahn H, Son M, Heo S-J, et al. Anti-obesity effects of Ishophloroglucin A from the brown seaweed Ishige okamurae (Yendo) via regulation of leptin signal in ob/ob mice. Algal Res. 2022;61:102533. https://doi.org/10.1016/j.algal.2021.102533
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. https://doi.org/10.1038/nrm.2017.95
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: The anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci. 2020;7:76. https://doi.org/10.3389/fmolb.2020.00076
Woonnoi W, Suttithumsatid W, Muneerungsee N, Saetan J, Tanasawet S, Sukketsiri W. Sangyod rice extract inhibits adipocyte growth and differentiation via mTOR, Akt, and AMPK pathways. J Funct Foods. 2023;111:105913. https://doi.org/10.1016/j.jff.2023.105913
Ganjayi MS, Karunakaran RS, Gandham S, Meriga B. Quercetin-3-O-rutinoside from Moringa oleifera downregulates adipogenesis and lipid accumulation and improves glucose uptake by activation of AMPK/Glut-4 in 3T3-L1 cells. Rev Bras Farmacogn. 2023;33(2):334–43. https://doi.org/10.1007/s43450-022-00352-9
Ko S-C, Lee M, Lee J-H, Lee S-H, Lim Y, Jeon Y-J. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes. Environ Toxicol Pharmacol. 2013;36(3):1253–60. https://doi.org/10.1016/j.etap.2013.10.011
Beppu F, Hosokawa M, Niwano Y, Miyashita K. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A y mice. Lipids Health Dis. 2012;11(1):112. https://doi.org/10.1186/1476-511X-11-112
Liu Y, Li Y, Wang J, Yang L, Yu X, Huang P, et al. Salvia-Nelumbinis naturalis improves lipid metabolism of NAFLD by regulating the SIRT1/AMPK signaling pathway. BMC Complement Med Ther. 2022;22(1):213. https://doi.org/10.1186/s12906-022-03697-9
Yunkun Z, Rong Y, Lin L, Wenli L, Changqing L, Yu P, et al. Medication rule and mechanism of traditional Chinese medicine in treating metabolism-associated fatty liver disease based on bioinformatics technology. Digit Chinese Med. 2023;6(3):257–71. https://doi.org/10.1016/j.dcmed.2023.10.002
Zhang J, Hu C, Li X, Liang L, Zhang M, Chen B, et al. Protective effect of dihydrokaempferol on acetaminophen-induced liver injury by activating the SIRT1 pathway. Am J Chin Med. 2021;49(03):705–18. https://doi.org/10.1142/S0192415X21500324
Marion-Letellier R, Savoye G, Ghosh S. Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol. 2016;785:44–9. https://doi.org/10.1016/j.ejphar.2015.11.004
Janani C, Ranjitha Kumari BD. PPAR gamma gene – A review. Diabetes Metab Syndr Clin Res Rev. 2015;9(1):46–50. https://doi.org/10.1016/j.dsx.2014.09.015
Balkrishna A, Sharma S, Maity M, Tomer M, Singh R, Gohel V, et al. Divya-WeightGo combined with moderate aerobic exercise remediates adiposopathy, insulin resistance, serum biomarkers, and hepatic lipid accumulation in high-fat diet-induced obese mice. Biomed Pharmacother. 2023;163:114785. https://doi.org/10.1016/j.biopha.2023.114785
Hammad SS, Jones PJ. Dietary fatty acid composition modulates obesity and interacts with obesity‐related genes. Lipids. 2017;52(10):803–22. https://doi.org/10.1007/s11745-017-4291-9