Molecular approach to the characterization of lipase encoding genes from Moraxella sp. SBE01
Main Article Content
Abstract
Lipase from Moraxella sp. SBE01 is an expression of the gene encoding lipase. Detection and characterization of the Moraxella sp. SBE01 lipase coding gene is necessary for large-scale lipase production through genetic engineering. This study aimed to observe the molecular weight, amino acid sequence, length, and conserved amino acids in the DNA encoding the lipase gene, with the goal of identifying and characterizing the lipase-coding gene from Moraxella sp. SBE01. The primer design process was conducted to amplify the lipase gene from Moraxella sp. SBE01 using specialized software for sequence alignment and phylogenetic analysis. Amplification was carried out using PCR with the designed primer, forward primer (GTC ATG ATG TAC TTC CAY GGN GGN GG), reverse primer (GGT TGC CGC CGG CDS WRT CNC C). PCR was carried out under pre-denatured conditions at 95°C (3 minutes), followed by 30 cycles of denaturation at 95°C, annealing at 66°C (30 seconds), 70°C elongations (1 minute) and final elongation of 70°C (10 minutes). The PCR results were electrophoresed using 1% agarose gel with a 1 kb DNA marker. The PCR results were sequenced and analyzed for gene and amino acid sequences and the type of lipase expressed. Sequencing resulted in 387 bp of the nucleotide sequence. The gene and amino acid sequences from Moraxella sp. SBE01 had high homology with the gene and amino acid sequences from Moraxella sp. strain TA144. The lipase gene encodes a protein consisting of 129 amino acids and contains a conserved HGG (His-Gly-Gly) motif, which is characteristic of lipases in family IV, also known as the hormone-sensitive lipase (HSL) family. This conserved sequence suggests that the lipase shares structural and functional similarities with other enzymes in the HSL family, playing a key role in lipid metabolism.
Downloads
Article Details
Copyright (c) 2024 Siti Soleha, Syarifah Syarifah, Tito Nurseha, Awalul Fatiqin, Endah Retnaningrum, Yitro Serang
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Maheswaran B, Sebastin Raj J, Pandiyarajan P, Jaya Santhi R, Mythili R, K.S V, et al. Polyurethane degradation by extracellular urethanase producing bacterial isolate Moraxella catarrhalis strain BMPPS3. Environmental Research. 2024;251: 118631. https://doi.org/10.1016/j.envres.2024.118631
Park JY, Park KM. Lipase and its unique selectivity: A mini-review. Haque A (ed.) Journal of Chemistry. 2022;2022:1–11. https://doi.org/10.1155/2022/7609019
Gomez-Vázquez E, Sánchez Roque Y, Ibáñez-Duharte G, Canseco-Pérez M, Zenteno-Carballo A, Berrones-Hernández R, et al. Molecular identification and lipolytic potential of filamentous fungi isolated from residual cooking oil. Biodiversity Data Journal. 2024;12:e113698. https://doi.org/10.3897/BDJ.12.e113698
Melani NB, Tambourgi EB, Silveira E. Lipases: From production to applications. Separation & Purification Reviews. 2020;49(2):143–158. https://doi.org/10.1080/15422119.2018.1564328
Pereira ADS, De Souza AH, Fraga JL, Villeneuve P, Torres AG, Amaral PFF. Lipases as effective green biocatalysts for phytosterol esters’ production: A review. Catalysts. 2022;12(1):88. https://doi.org/10.3390/catal12010088
Okpara MO. Microbial enzymes and their applications in food industry: A mini-review. Advances in Enzyme Research. 2022;10(01): 23–47. https://doi.org/10.4236/aer.2022.101002
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories. 2020;19(1):169. https://doi.org/10.1186/s12934-020-01428-8
Jiménez DJ, Dini‐Andreote F, Ottoni JR, De Oliveira VM, Van Elsas JD, Andreote FD. Compositional profile of α / β‐hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil‐contaminated sites. Microbial Biotechnology. 2015;8(3):604–613. https://doi.org/10.1111/1751-7915.12157
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from medicinal chemistry viewpoint. Mini-Reviews in Medicinal Chemistry. 2022;22(19):2486–2561. https://doi.org/10.2174/1389557522666220325150531
Alvarez E, Villa R, Nieto S, Donaire A, García-Verdugo E, Luis SV, et al. The suitability of lipases for the synthesis of bioactive compounds with cosmeceutical applications. Mini-Reviews in Organic Chemistry. 2021;18(4): 515–528. https://doi.org/10.2174/1570193X17999200805215623
Abol-Fotouh D, AlHagar OEA, Hassan MA. Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus FMR12 for detergent formulations. International Journal of Biological Macromolecules. 2021;181: 125–135. https://doi.org/10.1016/j.ijbiomac.2021.03.111
Caicedo-Paz AV, Mediavilla M, Farías C, Valenzuela R, Mussagy CU, Martinez-Galan JP. Sustainable one-pot solvent-free enzymatic synthesis of capric acid-rich structured lipids to enhance the nutritional value of grape seed oil. Process Biochemistry. 2024;144: 160–167. https://doi.org/10.1016/j.procbio.2024.05.020
Karia M, Kaspal M, Alhattab M, Puri M. Marine-derived lipases for enhancing enrichment of very-long-chain polyunsaturated fatty acids with reference to omega-3 fatty acids. Marine Drugs. 2024;22(7):301. https://doi.org/10.3390/md22070301
Lai OM, Lee YY, Phuah ET, Akoh CC. Lipase/Esterase: properties and industrial applications. In: Encyclopedia of Food Chemistry. Elsevier; 2019. p. 158–167. https://doi.org/10.1016/B978-0-08-100596-5.21640-5
Al-Mijalli SH, Mrabti HN, Assaggaf H, Attar AA, Hamed M, Baaboua AE, et al. Chemical profiling and biological activities of pelargonium graveolens essential oils at three different phenological stages. Plants. 2022;11(17): 2226. https://doi.org/10.3390/plants11172226
Mendes DB, Silva FFD, Guarda PM, Almeida AF, Oliveira DPD, Morais PB, et al. Lipolytic enzymes with hydrolytic and esterification activities produced by filamentous fungi isolated from decomposition leaves in an aquatic environment. Enzyme Research. 2019;2019: 1–13. https://doi.org/10.1155/2019/8182425
Soleha S, Retnaningrum E. Screening and molecular identification of lipolytic bacteria from spent bleaching earth. Biodiversitas. 2020;21(9): 4155–4161. https://doi.org/10.13057/biodiv/d210929
Pham VHT, Kim J, Chang S, Chung W. Investigation of lipolytic-secreting bacteria from an artificially polluted soil using a modified culture method and optimization of their lipase production. Microorganisms. 2021;9(12):2590. https://doi.org/10.3390/microorganisms9122590
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Canadian Journal of Microbiology. 2017;63: 1–14. https://doi.org/10.1139/cjm-2016-0447
Kandida I, Tari M, Fatiqin A. Effectiveness of the Combination of green betel leaf extract (Piper betle) and mint leaf (Mentha piperita) as antibacterials against Streptococcus mutans. Bioactivities. 2023;1(1):32–38. https://doi.org/10.47352/bioactivities.2963-654X.184
Soleha S, Retnaningrum E. Optimization extracellular lipase activity from Moraxella sp SBE01 for hydrocarbons nanoremediation. AIP Conference Proceedings. 2020;2260. https://doi.org/10.1063/5.0015926
Periadnadi P, Nurmiati N, Siregar FW, Edelwis TW. Exploration and characterization of lipid-degrading bacteria from palm oil mill effluent. Global Journal of Environmental Science and Management. 2024;10(4). https://doi.org/10.22034/gjesm.2024.04.08
Mandari V, Nema A, Devarai SK. Sequential optimization and largescale production of lipase using tri-substrate mixture from Aspergillus niger MTCC 872 by solid state fermentation. Process Biochemistry. 2020;89: 46–54. https://doi.org/10.1016/j.procbio.2019.10.026
Syamsidi A, Aanisah N, Fiqram R, Jultri I Al. Primer design and analysis for detection of mecA gene. Journal of Tropical Pharmacy and Chemistry. 2021;5(3): 245–253. https://doi.org/10.25026/jtpc.v5i3.297
Neuberger-Castillo L, Hamot G, Marchese M, Sanchez I, Ammerlaan W, Betsou F. Method validation for extraction of DNA from human stool samples for downstream microbiome analysis. Biopreservation and Biobanking. 2020;18(2):102–116. https://doi.org/10.1089/bio.2019.0112
Pratiwi E, Widodo LI. Quantification of gene extraction results as a critical factor for the success of RT PCR examination. [Kuantifikasi hasil ekstraksi gen sebagai faktor kritis untuk keberhasilan pemeriksaan RT PCR]. Indonesian Journal for Health Sciences. 2020;4(1):1. https://doi.org/10.24269/ijhs.v4i1.2293
Arslan M, Tezcan E, Camci H, Avci MK. Effect of DNA concentration on band intensity and resolution
in agarose gel elec-trophoresis. Van Sağlık Bilimleri Dergisi. 2021;14(3):326–333. https://doi.org/10.52976/vansaglik.969547
Mawardi A, Simonapendi ML. Testing the effectiveness of the DNA isolation method for Arabica coffee genome (Coffea arabica L.) from Jayawijaya district. [Uji efektivitas metode isolasi DNA genom kopi arabika (Coffea arabica L.) asal
kabupaten Jayawijaya]. Jurnal Biologi Papua. 2018;8(1). https://doi.org/10.31957/jbp.10
Chen JY, Liu ZJ, Wang XW, Ye CL, Zheng YJ, Peng HP, et al. Ultrasensitive electrochemical
biosensor developed by probe lengthening for detection of genomic DNA in human serum. Analytical Chemistry. 2019;91(7): 4552–4558. https://doi.org/10.1021/acs.analchem.8b05692
Sophian A, Purwaningsih R, Muindar M, Igirisa EPJ, Amirullah ML. Short communication:
Analysis of purity and concentration of DNA extracted from intron patho gene-spin extraction on crab processed food product samples. Asian Journal of Tropical Biotechnology. 2021;18(1). https://doi.org/10.13057/biotek/c180103
Muthiadin C, Arma A, Aziz IR, Masriany M, Hajrah H. Identification of DNA barcodes from
rbcL chloroplast DNA in katokkon chili (Capsicum annuum var. chinense) origin of Tana Toraja, South Sulawesi. Journal of Multidisciplinary Applied Natural Science. 2024;4(2):291–303. https://doi.org/10.47352/jmans.2774-3047.216
Yu Y, Wang X, Qu R, OuYang Z, Guo J, Zhao Y, et al. Extraction and analysis of high-quality chloroplast DNA with reduced nuclear DNA for medicinal plants. BMC Biotechnology. 2024;24(1):20. https://doi.org/10.1186/s12896-024-00843-8
Lucena-Aguilar G, Sánchez-López AM, Barberán-Aceituno C, Carrillo-Ávila JA, López-Guerrero JA, Aguilar-Quesada R. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking. 2016;14(4):264–270. https://doi.org/10.1089/bio.2015.0064
Hose L, Schürmann M, Mennebröcker I, Kim R, Busche T, Goon P, et al. Characterization of non-invasive oropharyngeal samples and nucleic acid isolation for molecular diagnostics. Scientific Reports. 2024;14(1): 4061. https://doi.org/10.1038/s41598-024-54179-6
Sugiarti SA, Nurhayati N, Abinawanto. Optimization of annealing temperature for detection of lipase gene in Bacillus subtilis using polymerase chain reaction (PCR) method. Journal of Physics: Conference Series. 2021;1725(1):012046. https://doi.org/10.1088/1742-6596/1725/1/012046
Herman H, Nainggolan M, Roslim DI. Optimization of annealing temperature for four rapd primers in mung bean (Vigna radiata L.). [Optimasi suhu annealing untuk empat primer rapd pada kacang hijau (Vigna radiata L.)]. Dinamika Pertanian. 2019;34(1): 41–46. https://doi.org/10.25299/dp.2018.vol34(1).4081
Maruzy A, Adi MBS, Safrina D, Putra ADP, Wijaya NR, Subositi D. Genetic variations of fennel (Foeniculum vulgare Mill.) based on Inter-Simple Sequence Repeats (ISSR) marker. Jurnal Biota. 1970;10(1):15–23. https://doi.org/10.19109/Biota.v10i1.20667
Setyawati R, Zubaidah S. Optimization of primer concentration and annealing temperature in detecting leptin gene in ongole crossbreed cattle (PO) using Polymerase Chain Reaction (PCR). [Optimasi konsentrasi primer dan suhu annealing dalam mendeteksi gen leptin pada sapi peranakan ongole (PO) menggunakan Polymerase Chain Reaction (PCR)]. Indonesian Journal of Laboratory. 2021;4(1):36. https://doi.org/10.22146/ijl.v4i1.65550
Silalahi D, Wirawan IGP, Sasadara MMV. Optimization of annealing temperature for amplification of EhoscnOla locus in pranajiwa (Euchresta horsfieldii) plant collected from mountains, urban and coastal areas in Bali. IOP Conference Series: Earth and Environmental Science. 2021;913(1). https://doi.org/10.1088/1755-1315/913/1/012059
Ding Z, Lu C, Zhou J, Zheng Y, Chen Y, Huang Y, et al. ArPAOs from A. roxburghii showed essential roles in polyamine mediating water stress tolerance. Scientia Horticulturae. 2024;335:113356. https://doi.org/10.1016/j.scienta.2024.113356
Nagaroor V, Gummadi SN. An overview of mammalian and microbial hormone-sensitive lipases
(lipolytic family IV): biochemical properties and industrial applications. Biotechnology and
Genetic Engineering Reviews. 2022; 1–30. https://doi.org/10.1080/02648725.2022.2127071
Kuan JE, Tsai CH, Chou CC, Wu C, Wu WF. Enzymatic characterization of a novel HSL family IV esterase EstD04 from Pseudomonas sp. D01 in mealworm gut microbiota. Molecules. 2023;28(14):5410. https://doi.org/10.3390/molecules28145410