Analysis of Purity and Concentration Escherichia coli DNA by Boiling Method Isolation with Addition of Proteinase-K and RNase
Main Article Content
Abstract
Escherichia coli is a leading cause of Urinary Tract Infections (UTIs) in Indonesia, with approximately 180,000 cases reported annually. The more cases of UTIs, the more PCR diagnosis is needed with an accurate, fast, simple, and economical DNA isolation method. However, currently, there is no DNA purification stage from protein and RNA contaminants in the boiling DNA isolation method. This study aimed to investigate the impact of incorporating Proteinase-K and RNase into the boiling DNA isolation method on the purity and concentration of E. coli’s DNA during isolation. The boiling method involved heating to 95°C – 100°C bring to cell lysis and release of cellular components, including DNA. Urine samples were artificially contaminated with E. coli at different McFarland standards (0.25, 0.5, and 1). The boiling DNA isolation method was then performed and then analyzed for purity and concentration using a NanoDrop spectrophotometer. This study demonstrated a positive correlation between Proteinase-K and RNase concentrations used in the boiling DNA isolation method and the subsequent increase in DNA purity and concentration. An increase in DNA purity and concentration was obtained even though it was not statistically significant compared to that without Proteinase-K and RNase addition, with p-values of 0.245 for DNA purity and 0.353 for DNA concentration. Further research is recommended with higher Proteinase-K and RNase concentrations in the boiling DNA isolation method to achieve improved purity and concentration of E. coli DNA. Such enhancements could improve PCR amplification and help diagnose E. coli-related UTIs.
Downloads
Article Details
Copyright (c) 2023 Bunga Rossa Lesiani, Yogi Khoirul Abror, Fusvita Merdekawati, Ai Djuminar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies Roger. Nat Rev Microbiol. 2020; 18(4): 211–226. DOI: 10.1038/s41579-020-0324-0. DOI: https://doi.org/10.1038/s41579-020-0324-0
Zharaswati P, Budayanti NNS, Fatmawati NND. Optimal PCR conditions for detecting the FimH gene in clinical isolates of Escherichia coli causing urinary tract infections. [Kondisi pptimal PCR untuk mendeteksi gen FimH isolat klinis Escherichia coli penyebab infeksi saluran kemih]. Intisari Sains Medis. 2019; 10(2): 220–222 DOI: 10.15562/ism.v10i2.236. DOI: https://doi.org/10.15562/ism.v10i2.236
Drage LKL, Robson W, Mowbray C, Ali A, Perry JD, Walton KE, et al. Elevated urine IL-10 concentrations associate with Escherichia coli persistence in older patients susceptible to recurrent urinary tract infections. Immun Ageing. 2019; 16(1): 1–11. DOI: 10.1186/s12979-019-0156-9. DOI: https://doi.org/10.1186/s12979-019-0156-9
Xu R, Deebel N, Casals R, Dutta R, Mirzazadeh M. A new gold rush: A review of current and developing diagnostic tools for urinary tract infections. Diagnostics. 2021; 11(3): 1-14. DOI: 10.3390/diagnostics11030479. DOI: https://doi.org/10.3390/diagnostics11030479
Prayekti E, Suliati S, Wulandari DA. Comparation between Mac conkey and coconut water medium as a growth medium for Escherichia coli. Indones J Med Lab Sci Technol. 2021; 3(1): 19–25. DOI: 10.33086/ijmlst.v3i1.1906. DOI: https://doi.org/10.33086/ijmlst.v3i1.1906
Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol. 2020; 104(10): 4281–4288. DOI: 10.1007/s00253-020-10542-x. DOI: https://doi.org/10.1007/s00253-020-10542-x
Marsh RL, Nelson MT, Pope CE, Leach AJ, Hoffman LR, Chang AB, et al. How low can we go? The implications of low bacterial load in respiratory microbiota studies. Pneumonia. 2018; 10(1): 1–9. DOI: 10.1186/s41479-018-0051-8. DOI: https://doi.org/10.1186/s41479-018-0051-8
Rahmawati L, Sasongkowati R, Anggraini A, Adam D. Detection of E. coli producing Extended Spectrum Beta-Lactamase (ESBL) using the PCR method in clean water samples. [Deteksi E. coli penghasil Extended Spectrum Beta-Lactamase (ESBL) menggunakan metode PCR pada sampel air bersih]. Gema Lingkung Kesehat. 2022; 20(2): 111–116. DOI: 10.36568/gelinkes.v20i2.35. DOI: https://doi.org/10.36568/gelinkes.v20i2.35
Ismaun, Muzuni, Hikmah N. Molecular detection of Escherichia coli bacteria as a cause of diarrhic disease using techniques of PCR. Bioma. 2021; 6(2): 1–9. DOI: 10.20956/bioma.v6i2.13194.
Afif R, Putri DH. 16S rRNA Gene amplification of endophytic bacteria which produces antimicrobial compounds. Bio Sains. 2019; 4(1): 63–71. DOI: 10.24036/5328RF00.
Adhyatma IGR, Darwinata AE, Hendrayana MA, Fatmawati NND. IS6110 Sequence amplification with DNA extraction using the rapid boiling method for identification of Mycobacterium tuberculosis. [Amplifikasi sekuen IS6110 dengan ekstraksi DNA menggunakan metode pemanasan (rapid boiling) untuk identifikasi Mycobacterium tuberculosis]. J Med Udayana. 2020; 9(2): 93–99. DOI: 10.24843.MU.2020.V9.i2.P16.
Fihiruddin, Ilmi HF, Khusuma A. Boiling temperature variations in amplification of the M. tuberculosis ihhA gene PCR method. [Variasi temperatur boiling pada amplifikasi gen ihhA M.tuberculosis metode PCR]. Titian Ilmu J Ilm MultiS ciences. 2022; 14(2): 57–62. DOI: 10.30599/jti.v14i2.1661.
Pratiwi E, Widodo LI. Quantification of gene extraction results as a critical factor for the success of RT PCR examination. [Kuantifikasi hasil ekstraksi gen sebagai faktor kritis untuk keberhasilan pemeriksaan RT PCR]. Indones J Heal Sci. 2020; 4(1): 1–9. DOI: 10.24269/ijhs.v4i1.2293. DOI: https://doi.org/10.24269/ijhs.v4i1.2293
Dewanata PA, Mushlih M. Differences in DNA purity test using UV-Vis Spectrophotometer and Nanodrop Spectrophotometer in type 2 diabetes mellitus patients. Indones J Innov Stud. 2021; 15: 1–10. DOI: 10.21070/ijins.v15i.553. DOI: https://doi.org/10.21070/ijins.v15i.553
Khairunisa SQ, Masyeni S, Witaningrum AM, Nasronudin N. Comparison of low and high DNA purity for quantitative detection of ratio mitochondrial and nucleus DNA among drug-treated HIV patients by Real-time PCR. IOP Conf Ser Mater Sci Eng. 2018; 434(1): 1–7. DOI: 10.1088/1757-899X/434/1/012338. DOI: https://doi.org/10.1088/1757-899X/434/1/012338
Munch MM, Chambers LC, Manhart LE, Domogala D, Lopez A, Fredricks DN, et al. Optimizing bacterial DNA extraction in urine. PLoS One. 2019; 14(9): 1–13. DOI: 10.1371/journal.pone.0222962. DOI: https://doi.org/10.1371/journal.pone.0222962
Karstens L, Siddiqui NY, Zaza T, Barstad A, Amundsen CL, Sysoeva TA. Benchmarking DNA isolation kits used in analyses of the urinary microbiome. Sci Rep. 2021; 11(1): 1–9. DOI: 10.1038/s41598-021-85482-1. DOI: https://doi.org/10.1038/s41598-021-85482-1
Seniati, Marbiah, Irham A. Rapid density measurement of Vibrio harveyi bacteria using a spectrophotometer. [Pengukuran kepadatan bakteri Vibrio harveyi secara cepat dengan menggunakan spectrofotometer]. Agrokompleks. 2019; 19(2): 12–19. DOI: 10.51978/japp.v19i2.137.
Puspitaningrum R, Adhiyanto C, Solihin. Molecular genetics and its applications [Genetika molekuler dan aplikasinya]. Deepublish. 2018.
Yamagishi J, Sato Y, Shinozaki N, Ye B, Tsuboi A, Nagasaki M, et al. Comparison of boiling and robotics automation method in DNA extraction for metagenomic sequencing of human oral microbes. PLoS One. 2016; 11(4): 14–16. DOI: 10.1371/journal.pone.0154389. DOI: https://doi.org/10.1371/journal.pone.0154389
Setiani NA, Tritama E, Tresnawulansari A. Optimization of Optical Density (OD) in Salmonella typhi genome isolation using genomic dna purification kit. [Optimasi Optical Density (OD) pada isolasi genom Salmonella typhi menggunakan genomic DNA purification kit]. J Sains dan Teknol Farm Indones. 2021; 10(1): 35–43. DOI: 10.58327/jstfi.v10i1.182. DOI: https://doi.org/10.58327/jstfi.v10i1.182
Murtiyaningsih H. Isolation of genomic DNA and identification of genetic relationships in pineapple using RAPD. [Isolasi DNA genom dan identifikasi kekerabatan genetik nanas menggunakan RAPD]. J Agritop. 2017; 15(1): 85–93. DOI: 10.32528/agr.v15i1.795.
Mustaqimah DN, Septiani T, Roswiem AP. Detection of pig DNA in sausage products using Real Time–Polymerase Chain Reaction (RT–PCR). [Deteksi DNA babi pada produk sosis menggunakan Real Time–Polymerase Chain Reaction (RT–PCR)]. Indones J Halal. 2021; 3(2): 106–111. DOI: 10.14710/halal.v3i2.10130. DOI: https://doi.org/10.18517/ijhr.3.1.24-28.2021
Setiaputri AA, Rohmad Barokah G, Alsere Bardian Sahaba M, Dini Arbajayanti R, Fabella N, Mustika Pertiwi R, et al. Comparison of DNA isolation methods in fresh and processed fishery products. [Perbandingan metode isolasi dna pada produk perikanan segar dan olahan]. J Pengolah Has Perikan Indones. 2020; 23(3): 447–458. DOI: 10.17844/jphpi.v23i3.32314. DOI: https://doi.org/10.17844/jphpi.v23i3.32314
Ahmed OB, Dablool AS. Quality improvement of the DNA extracted by boiling method in Gram negative bacteria. Int J Bioassays. 2017; 6(4): 5347–5349. DOI: 10.21746/ijbio.2017.04.004. DOI: https://doi.org/10.21746/ijbio.2017.04.004
Hutami R, Bisyri H, Sukarno S, Nuraini H, Ranasasmita R. DNA extraction from fresh meat for analysis by Loop-Mediated Isothermal Amplification (LAMP) method. [Ekstraksi DNA dari daging segar untuk analisis dengan metode Loop-Mediated Isothermal Amplification (LAMP)]. J Agroindustri Halal. 2018; 4(2): 209–216. DOI: 10.30997/jah.v4i2.1409. DOI: https://doi.org/10.30997/jah.v4i2.1409
Muna F, Fitri N, Malik A, Karuniawati A, Amin Soebandrio D. Fast method of Corynebacterium diphtheriae DNA extraction for PCR Examination. [Metode cepat ekstraksi DNA Corynebacterium diphtheriae untuk pemeriksaan PCR]. Bul Penelit Kesehat. 2014; 42(2): 85–92. DOI: 10.22435/bpk.v42i2 Jun.3556.85-92.