Main Article Content

Nur Kusmiyati Yuni Puspitasari Ulfah Utami Anggeria Oktavisa Denta

Abstract

Exopolysaccharides get a lot of attention because they can improve the host immune system. Exopolysaccharide is a polysaccharide that is produced and secreted from microbes outside the cell, usually found on the outside of the bacterial structure. The Lactobacillus casei group from human breast milk is thought to have the ability to produce exopolysaccharides. The purpose of the study was to examine the exopolysaccharide of the L. casei group that was isolated from breast milk. The methods used include the gravimetric, the phenol-sulfuric acid and the Fourier Transform Infra-Red (FTIR). The results showed that the L. casei group could produce exopolysaccharides, and had high exopolysaccharide total sugar content. Lactobacillus paracasei had the highest exopolysaccharide and total sugar content of 3660 mg/L and 80.6%, respectively. The FTIR results of the L. casei group exopolysaccharides showed the presence of hydroxyl functional groups O-H (3425.76-3295.98 cm-1), methyl C-H (2930.86-2856.70 cm-1), carbonyl C=O (1660.11-1647.27 cm-1), C-H (1456.16-1373.44 cm-1) and C-O-C ether (1071.08-1056.82 cm-1) which are specific characters of exopolysaccharides. Since the FTIR profile demonstrates that the L. casei group can produce exopolysaccharides, it has greater potential as a a probiotic.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kusmiyati, N., Puspitasari, Y., Utami, U. and Denta, A. O. (2023) “Analysis of Exopolysaccharides in Lactobacillus casei group Probiotics from Human Breast Milk”, Indonesian Journal of Medical Laboratory Science and Technology, 5(1), pp. 29–41. doi: 10.33086/ijmlst.v5i1.2872.
Section
Articles
Exopolysaccharide, Functional Ggroup, Lactobacillus casei

References

Othman NZ, Mohd Din ARJ, Mohammad Z, Rosli MA, Sarmidi MR. Statistical optimization of medium compositions for high cell mass and exopolysaccharide production by Lactobacillus plantarum ATCC 8014. Appl Food Biotechnol. 2018;5(2):87–96. DOI: 10.22037/afb.v5i2.19299

Ahamad N, Kar A, Mehta S, Dewani M, Ravichandran V, Bhardwaj P, et al. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials. 2021;274(April):120875. DOI: 10.1016/j.biomaterials.2021.120875 DOI: https://doi.org/10.1016/j.biomaterials.2021.120875

Sasikumar K, Kozhummal Vaikkath D, Devendra L, Nampoothiri KM. An Exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol. 2017;241:1152–6. DOI: 10.1016/j.biortech.2017.05.075 DOI: https://doi.org/10.1016/j.biortech.2017.05.075

Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, et al. Paraprobiotics and postbiotics of probiotic lactobacilli, their positive effects on the host and action mechanisms: A review. Front Nutr. 2020;7(October). DOI: 10.3389/fnut.2020.570344 DOI: https://doi.org/10.3389/fnut.2020.570344

Nurhasanah, Fu’adah IT, Satria H, Yuwono SD. Analisis eksopolisakarida dari bakteri asam laktat hasil fermentasi kefir kolostrum. [Analysis of exopolysaccharides from lactic acid bacteria resulting from colostrum kefir fermentation.] Anal Environ Chem. 2020;5(1):65–73. DOI: 10.23960/aec.v5.i1.2020.p65-73 DOI: https://doi.org/10.23960/aec.v5.i1.2020.p65-73

Khan SA, Khan SB, Khan LU, Farooq A, Akhtar K, Asiri AM. Fourier Transform Infrared Spectroscopy: fundamentals and application in functional groups and nanomaterials characterization. Handb Mater Charact. 2018;(September):1–613. DOI: 10.1007/978-3-319-92955-2 DOI: https://doi.org/10.1007/978-3-319-92955-2_9

Kusmiyati, N., Wicaksono, S.T., Sukarno, A.S. Isolation and characterization of probiotic lactic acid bacteria from human breast milk. Nova Biotechnol Chim. 2022;21(2): e1053. DOI: 10.36547/nbc.1053 DOI: https://doi.org/10.36547/nbc.1053

Sulastri A, Manguntungi B, Vanggy LR. Analisis Viabilitas Lactobacillus lactis pada Inovasi Media Dasar Pertumbuhan Alternatif dan Media Dasar Penepungan Bakteri Asam Laktat. [Viability analysis of Lactobacillus lactis on innovation of alternative growth base media and lactic acid bacterial flourishing basic media] J TAMBORA. 2020;4(2):16–22. DOI: 10.36761/jt.v4i2.635 DOI: https://doi.org/10.36761/jt.v4i2.635

Ma’unatin A, Harijono H, Zubaidah E, Rifa’i M. The Isolation of exopolysaccharide-producing lactic acid bacteria from lontar (Borassus flabellifer L.) sap. Iran J Microbiol. 2020;12(5):437–44. DOI: 10.18502/ijm.v12i5.4605 DOI: https://doi.org/10.18502/ijm.v12i5.4605

Winahyu DA, Primadiamanti A. Bioaktivitas Antioksidan Lotion Senyawa Eksopolisakarida dari Mikroalga Spirulina sp. [Bioactivity antioxidant lotion exopolysaccharide compound from microalgae Spirulina sp]Anal Anal Environ Chem. 2020;5(02):169–77. DOI: https://doi.org/10.23960/aec.v5.i2.2020.p169-177

Pinaria, Y. W., Antara, N. S., Putra, G. G., & Sujaya IN. Characterization of exopolysaccharide produced by Lactobacillus casei AL15 isolated from sap of Arenga pinnata. J Nat Sci Res. 2016;6(22):7–12. Available from: www.iiste.org

Xu X, Qiao Y, Peng Q, Shi B, Dia VP. Antioxidant and Immunomodulatory properties of partially purified exopolysaccharide from Lactobacillus casei isolated from Chinese Northeast Sauerkraut. Immunol Invest. 2021;00(00):1–18. Available DOI: 10.1080/08820139.2020.1869777 DOI: https://doi.org/10.1080/08820139.2020.1869777

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan JR. Introduction to spectroscopy. 3P rd P Ed. Paint Testing Manual. 2016. p. 545-545–2.

Zhang Z, Zhou Z, Li Y, Zhou L, Ding Q, Xu L. Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci Rep. 2016;6(May):1–14. DOI: 10.1038/srep36083 DOI: https://doi.org/10.1038/srep36083

Chambi D, Romero-Soto L, Villca R, Orozco-Gutiérrez F, Vega-Baudrit J, Quillaguamán J, et al. Exopolysaccharides production by cultivating a bacterial isolate from the hypersaline environment of Salar De Uyuni (Bolivia) in pretreatment liquids of steam-exploded quinoa stalks and enzymatic hydrolysates of curupaú sawdust. Fermentation. 2021;7(1):1–16. DOI: 10.3390/fermentation7010033 DOI: https://doi.org/10.3390/fermentation7010033

Anindita NS. Identifikasi glukosiltransferase (gtf) penyandi eksopolisakarida pada strain weisella confusa probiotik asal air susu ibu (ASI). [Identification of exopolysaccharide encoding glucosyltransferase (gtf) in the weisella confusa probiotic strain from breast milk]. J Pangan dan Agroindustri. 2020;8(2):75–85. DOI: 10.21776/ub.jpa.2020.008.02.3 DOI: https://doi.org/10.21776/ub.jpa.2020.008.02.3

Fatih MT. Produksi eksopolisakarida oleh bakteri asam laktat asal susu kacang tanah terfermentasi. [Production of exopolysaccharides by lactic acid bacteria from fermented peanut milk] Malang: UIN Maulana Malik Ibrahim Malang. 2020. Available from: http://etheses.uin-malang.ac.id/id/eprint/24215

Bhat B, Bajaj BK. Hypocholesterolemic potential and bioactivity spectrum of an exopolysaccharide from a probiotic isolate Lactobacillus paracasei M7. Bioact Carbohydrates Diet Fibre. 2019;19(December 2018):100191. DOI: 10.1016/j.bcdf.2019.100191 DOI: https://doi.org/10.1016/j.bcdf.2019.100191

Li XW, Lv S, Shi TT, Liu K, Li QM, Pan LH, et al. Exopolysaccharides from yoghurt fermented by Lactobacillus paracasei: Production, purification and its binding to sodium caseinate. food hydrocoll. 2020;102(December 2019):105635. DOI: 10.1016/j.foodhyd.2019.105635 DOI: https://doi.org/10.1016/j.foodhyd.2019.105635

Malick A, Khodaei N, Benkerroum N, Karboune S. Production of exopolysaccharides by selected Bacillus strains: optimization of media composition to maximize the yield and structural characterization. Int J Biol Macromol. 2017;102:539–49. DOI: 10.1016/j.ijbiomac.2017.03.151 DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.151

Ng IS, Xue C. Enhanced exopolysaccharide production and biological activity of Lactobacillus rhamnosus ZY with Calcium and Hydrogen Peroxide. Process Biochem. 2017;52:295–304. DOI: 10.1016/j.procbio.2016.10.006 DOI: https://doi.org/10.1016/j.procbio.2016.10.006

Rajoka MSR, Jin M, Haobin Z, Li Q, Shao D, Jiang C, et al. Functional Characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT - Food Sci Technol. 2018;89:638–47. DOI: 10.1016/j.lwt.2017.11.034 DOI: https://doi.org/10.1016/j.lwt.2017.11.034

Bertsch A, Roy D, LaPointe G. Enhanced exopolysaccharide production by Lactobacillus rhamnosus in co-culture with Saccharomyces cerevisiae. Appl Sci. 2019;9(19). DOI: 10.3390/app9194026 DOI: https://doi.org/10.3390/app9194026

Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol. 2020;162:853–65. DOI: 10.1016/j.ijbiomac.2020.06.190 DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.190

Fan Y, Wang J, Gao C, Zhang Y, Du W. A Novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci Rep. 2020;10(1):1–10. DOI: 10.1038/s41598-020-65432-z DOI: https://doi.org/10.1038/s41598-020-65432-z

Al-Manhel AJA. Production of exopolysaccharide from local fungal isolate. Curr Res Nutr Food Sci. 2017;5(3):338–46. DOI: 10.12944/CRNFSJ.5.3.19 DOI: https://doi.org/10.12944/CRNFSJ.5.3.19

Bibi A, Xiong Y, Rajoka MSR, Mehwish HM, Radicetti E, Umair M, et al. Recent advances in the production of Exopolysaccharide (EPS) from Lactobacillus spp. and its application in The Food Industry: A Review. Sustain. 2021;13(22):1–19. DOI: 10.3390/su132212429 DOI: https://doi.org/10.3390/su132212429

Azizah FR. Pengaruh penambahan sukrosa pada air kelapa dan lama fermentasi terhadap produksi eksopolisakarida oleh Leuconostoc mesenteroides. [Effect of adding sucrose to coconut water and fermentation time on exopolysaccharide production by Leuconostoc mesenteroides]. Malang: UIN Maulana Malik Ibrahim Malang. 2019. Available from: http://etheses.uin-malang.ac.id/id/eprint/15207

Imran MYM, Reehana N, Jayaraj KA, Ahamed AAP, Dhanasekaran D, Thajuddin N, et al. Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. Int J Biol Macromol. 2016;93:731–45. DOI: 10.1016/j.ijbiomac.2016.09.007 DOI: https://doi.org/10.1016/j.ijbiomac.2016.09.007

Saif FAA, Sakr EAE. Characterization and Bioactivities of Exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. Bioact Carbohydrates Diet Fibre. 2020;24(April):100231. DOI: 10.1016/j.bcdf.2020.100231 DOI: https://doi.org/10.1016/j.bcdf.2020.100231

Razack SA, Velayutham V, Thangavelu V. Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turkish J Biol. 2013;37(3):280–8. DOI: 10.3906/biy-1206-50 DOI: https://doi.org/10.3906/biy-1206-50

Jurášková D, Ribeiro SC, Silva CCG. Exopolysaccharides Produced by lactic acid bacteria: from biosynthesis to health-promoting properties. Foods. 2022;11(2). DOI: 10.3390/foods11020156 DOI: https://doi.org/10.3390/foods11020156

Mundiri NA, Megantara I, Anggaeni TTK. Kajian pustaka: pemanfaatan eksopolisakarida bakteri asam laktat probiotik asal produk pangan fermentasi sebagai imunomodulator. [Literature review: utilization of probiotic lactic acid bacteria exopolysaccharide from fermented food products as an immunomodulator] Indones Med Veterinus. 2020;9(5):849–59. DOI: 10.19087/imv.2020.9.5.849 DOI: https://doi.org/10.19087/imv.2020.9.5.849

Inturri R, Mangano K, Santagati M, Intrieri M, Di Marco R, Blandino G. Immunomodulatory effects of Bifidobacterium longum W11 produced exopolysaccharide on cytokine production. Curr Pharm Biotechnol. 2017;18(11):883–9. DOI: 10.2174/1389201019666171226151551 DOI: https://doi.org/10.2174/1389201019666171226151551

Domingos-Lopes MFP, Nagy A, Stanton C, Ross PR, Gelencsér E, Silva CCG. Immunomodulatory Activity of exopolysaccharide producing Leuconostoc citreum strain isolated from pico cheese. J Funct Foods. 2017;33:235–43. DOI: 10.1016/j.jff.2017.03.054 DOI: https://doi.org/10.1016/j.jff.2017.03.054

Rajoka MSR, Wu Y, Mehwish HM, Bansal M, Zhao L. Lactobacillus Exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci Technol. 2020;103(March):36–48. DOI: 10.1016/j.tifs.2020.06.003 DOI: https://doi.org/10.1016/j.tifs.2020.06.003

Nur Kusmiyati, Agricultural Product Technology Department, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, East Java, Indonesia

Yuni Puspitasari, Biology Study Program, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, East Java, Indonesia

Ulfah Utami, Biology Study Program, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, East Java, Indonesia

Anggeria Oktavisa Denta, Nursing Study Program, Politeknik Negeri Madura, Sampang, East Java, Indonesia