Impact of Storage on Alteration in Biochemical and Hematological Characteristics in Locally Donated Blood from Lampung Province: Assessing Potential Risks for Recipients
Main Article Content
Abstract
The utilization of stored blood for transfusion purposes is a common practice in Blood Transfusion Units worldwide. However, the storage period can induce various cellular alterations, potentially comprising the quality and efficacy of blood transfusions. This study aims to investigate changes in biochemical and hematological parameters in blood donors during the storage period. This study was a prospective study involving the observation of 10 blood bags collected from local community donors in Lampung Province. The blood samples were stored in CPDA-1 anticoagulant bags at a controlled temperature of 2-6 ° C for 35 days. At regular intervals of 7 days, comprehensive assessments were performed, encompassing complete blood parameters, electrolyte concentration (Na+, K+, Cl-), and blood pH levels. After 35 days of storage, statistically significant alterations were observed. Notably, there was a significant increase in hematocrit levels (p=0.000), mean corpuscular volume (MCV) (p=0.019), lymphocyte counts (p=0.000), and potassium concentrations (p=0.000). Conversely, mean corpuscular hemoglobin concentration (MCHC) (p=0.025), leukocyte counts (p=0.000), neutrophil counts (p=0.000), platelet counts (p=0.000), sodium levels (p=0.000), chloride levels (p=0.000), and pH values (p=0.000) were significantly declines. In conclusion, blood storage leads to notable alterations in biochemical and blood cell characteristics. Therefore, it is advisable to prioritize using fresh whole blood or blood stored for no more than seven days in transfusion practices to minimize the risk of post-transfusion reactions, especially in vulnerable recipients.
Keywords: Blood transfusion, biochemical changes, cellular changes, storage.
Downloads
Article Details
Copyright (c) 2024 Filia Yuniza, Yustin, Bayu
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Abdalla, N., Almokhtar, B., Mahmoud, N., & Ali, A. (2021). CDPA-1 Stored Blood Induced Effect on some Haematological Parameters. Journal of Bioscience and Applied Research, 7(3), 2356–9182. https://doi.org/10.21608/jbaar.2021.195281 DOI: https://doi.org/10.21608/jbaar.2021.195281
Adams, F., Bellairs, G., Bird, A. R., Oguntibeju, O. O., & Khawar, K. M. (2015). Biochemical Storage Lesions Occurring in Nonirradiated and Irradiated Red Blood Cells: A Brief Review. https://doi.org/10.1155/2015/968302 DOI: https://doi.org/10.1155/2015/968302
Adias, T., Moore-Igwe, B., & Jeremiah, Z. (2012). Storage Related Haematological and Biochemical Changes of CPDA-1 Whole Blood in a Resource Limited Setting. Journal of Blood Disorders and Transfusion, 03(03). https://doi.org/10.4172/2155-9864.1000124 DOI: https://doi.org/10.4172/2155-9864.1000124
Ahmed, S., & Orakah, J. (2021). Cellular changes in stored whole blood and the implication on efficacy of transfusion therapy in Nigeria. International Journal of Biomedical and Health Sciences, 5(4). https://ojs.klobexjournals.com/index.php/ijbhs/article/view/1068
Aninagyei, E., Doku, E. T., Adu, P., Egyir-Yawson, A., & Acheampong, D. O. (2018). Storage related haematological and biochemical changes in Plasmodium falciparum infected and sickle cell trait donor blood. BMC Hematology, 18(1). https://doi.org/10.1186/S12878-018-0128-X DOI: https://doi.org/10.1186/s12878-018-0128-x
Ashan, H. R., Nasrul, E., & Rofinda, Z. D. (2020). Perbedaan Kadar Natrium pada Packed Red Cell Berdasarkan Lama Penyimpanan di Bank Darah RSUP Dr. M. Djamil Padang. Jurnal Kesehatan Andalas, 9(1), 54–58. https://doi.org/10.25077/JKA.V9I1.1237 DOI: https://doi.org/10.25077/jka.v9i1.1237
Asryani, T., Yaswir, R., & Rofinda, Z. D. (2018). Perbandingan Kadar Kalium Packed Red Cell Berdasarkan Lama Penyimpanan Di Bank Darah RSUP Dr. M. Djamil Padang. Jurnal Kesehatan Andalas, 7(0), 10–14. https://doi.org/10.25077/JKA.V7I0.862 DOI: https://doi.org/10.25077/jka.v7i0.862
Aubron, C., Flint, A. W. J., Ozier, Y., & McQuilten, Z. (2018). Platelet storage duration and its clinical and transfusion outcomes: A systematic review. Critical Care, 22(1), 1–13. https://doi.org/10.1186/S13054-018-2114-X/TABLES/5 DOI: https://doi.org/10.1186/s13054-018-2114-x
Batham, D. P., & Nayak, D. R. (2018). Evaluation of haematological parameter in stored CPDA-1 whole blood. International Journal of Applied Research, 4(11), 220–223. https://www.allresearchjournal.com/archives/?year=2018&vol=4&issue=11&part=D&ArticleId=5377
Bosman, G. J. C. G. M., Lasonder, E., Luten, M., Roerdinkholder-Stoelwinder, B., Novotný, V. M. J., Bos, H., & De Grip, W. J. (2008). The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion, 48(5), 827–835. https://doi.org/10.1111/J.1537-2995.2007.01630.X DOI: https://doi.org/10.1111/j.1537-2995.2007.01630.x
Cicha, I., Suzuki, Y., Tateishi, N., Shiba, M., Muraoka, M., Tadokoro, K., & Maeda, N. (2000). Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: rheological evaluation and susceptibility to oxidative stress. Vox Sanguinis, 79(2), 75–82. https://doi.org/10.1159/000031216 DOI: https://doi.org/10.1046/j.1423-0410.2000.7920075.x
D’Alessandro, A., Gevi, F., & Zolla, L. (2013). Red blood cell metabolism under prolonged anaerobic storage. Molecular BioSystems, 9(6), 1196–1209. https://doi.org/10.1039/C3MB25575A DOI: https://doi.org/10.1039/c3mb25575a
García-Roa, M., Del Carmen Vicente-Ayuso, M., Bobes, A. M., Pedraza, A. C., González-Fernández, A., Martín, M. P., Sáez, I., Seghatchian, J., & Gutiérrez, L. (2017). Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfusion = Trasfusione Del Sangue, 15(3), 222–231. https://doi.org/10.2450/2017.0345-16
Gupta, P., Goyal, R., Pantola, C., & Amit, S. (2016). To Study The Morphological Changes Seen in Stored Blood in a Blood Bank. Journal of Evolution of Medical and Dental Sciences, 5(77), 5705–5709. https://doi.org/10.14260/JEMDS/2016/1287 DOI: https://doi.org/10.14260/jemds/2016/1287
Hod, E. A., & Spitalnik, S. L. (2011). Harmful effects of transfusion of older stored red blood cells: iron and inflammation. Transfusion, 51(4), 881–885. https://doi.org/10.1111/J.1537-2995.2011.03096.X DOI: https://doi.org/10.1111/j.1537-2995.2011.03096.x
Jobes, D., Wolfe, Y., O’Neill, D., Calder, J., Jones, L., Sesok-Pizzini, D., & Zheng, X. L. (2011). Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion, 51(1), 43–51. https://doi.org/10.1111/J.1537-2995.2010.02772.X DOI: https://doi.org/10.1111/j.1537-2995.2010.02772.x
Koch, C. G., Duncan, A. I., Figueroa, P., Dai, L., Sessler, D. I., Frank, S. M., Ness, P. M., Mihaljevic, T., & Blackstone, E. H. (2019). Real Age: Red Blood Cell Aging During Storage. The Annals of Thoracic Surgery, 107(3), 973–980. https://doi.org/10.1016/J.ATHORACSUR.2018.08.073 DOI: https://doi.org/10.1016/j.athoracsur.2018.08.073
Marabi, P. M., Musyoki, S. K., & Amayo, A. (2021). Evaluation of cellular changes in blood stored for transfusion at Bungoma County Referral Hospital, Kenya. The Pan African Medical Journal, 38. https://doi.org/10.11604/PAMJ.2021.38.280.22327 DOI: https://doi.org/10.11604/pamj.2021.38.280.22327
Mustafa, I., Al Marwani, A., Mamdouh Nasr, K., Abdulla Kano, N., & Hadwan, T. (2016). Time Dependent Assessment of Morphological Changes: Leukodepleted Packed Red Blood Cells Stored in SAGM. BioMed Research International, 2016. https://doi.org/10.1155/2016/4529434 DOI: https://doi.org/10.1155/2016/4529434
Nogueira, D., Rocha, S., Abreu, E., Costa, E., & Santos-Silva, A. (2015). Biochemical and Cellular Changes in Leukocyte-Depleted Red Blood Cells Stored for Transfusion. Transfusion Medicine and Hemotherapy, 42(1), 46. https://doi.org/10.1159/000370140 DOI: https://doi.org/10.1159/000370140
Olivieri, O., de Franceschi, L., de Gironcoli, M., Girelli, D., & Corrocher, R. (1993). Potassium loss and cellular dehydration of stored erythrocytes following incubation in autologous plasma: role of the KCl cotransport system. Vox Sanguinis, 65(2), 95–102. https://doi.org/10.1111/J.1423-0410.1993.TB02123.X DOI: https://doi.org/10.1159/000462395
Opoku-Okrah, C., Safo Acquah, B. K., & Dogbe, E. E. (2015). Changes in potassium and sodium concentrations in stored blood. The Pan African Medical Journal, 20. https://doi.org/10.11604/PAMJ.2015.20.236.5851 DOI: https://doi.org/10.11604/pamj.2015.20.236.5851
Orlov, D., & Karkouti, K. (2015). The pathophysiology and consequences of red blood cell storage. Anaesthesia, 70 Suppl 1(S1). https://doi.org/10.1111/ANAE.12891 DOI: https://doi.org/10.1111/anae.12891
Oyet, C., Okongo, B., Apecu Onyuthi, R., & Muwanguzi, E. (2018). Biochemical changes in stored donor units: implications on the efficacy of blood transfusion. Journal of Blood Medicine, 9, 111. https://doi.org/10.2147/JBM.S163651 DOI: https://doi.org/10.2147/JBM.S163651
Roback, J. D. (2011). Vascular effects of the red blood cell storage lesion. Hematology. American Society of Hematology. Education Program, 2011, 475–479. https://doi.org/10.1182/ASHEDUCATION-2011.1.475 DOI: https://doi.org/10.1182/asheducation-2011.1.475
Shirvastava, P., & Dutta, S. (2020). A Comparative Study of Storage Related Haematological Changes in Whole Blood and PRBC in Blood Bank of a Tertiary Care Hospital. Asian Journal of Medical Research, 9(2), 1–7. https://doi.org/10.47009/AJMR.2020.9.2.PT1 DOI: https://doi.org/10.47009/ajmr.2020.9.2.PT1
Sparrow, R. L. (2015). Red blood cell storage duration and trauma. Transfusion Medicine Reviews, 29(2), 120–126. https://doi.org/10.1016/J.TMRV.2014.09.007 DOI: https://doi.org/10.1016/j.tmrv.2014.09.007
Spieth, P. M., & Zhang, H. (2018). Storage injury and blood transfusions in trauma patients. Current Opinion in Anaesthesiology, 31(2), 234–237. https://doi.org/10.1097/ACO.0000000000000565 DOI: https://doi.org/10.1097/ACO.0000000000000565
Sutjianto, A., Mangarengi, F., & Nurulita, A. (2014). Kadar Kalium di Packed Red Cells Simpanan. Indonesian Journal of Clinical Pathology and Medical Laboratory, 20(2), 147–149. https://doi.org/10.24293/IJCPML.V20I2.1083 DOI: https://doi.org/10.24293/ijcpml.v20i2.1083
Verma, M., & Dahiya, K. (2015). Effect of Blood Storage on Complete Biochemistry. Journal of Blood Disorders & Transfusion, 06(06). https://doi.org/10.4172/2155-9864.1000329 DOI: https://doi.org/10.4172/2155-9864.1000329
Wahidiyat, P. A., & Adnani, N. B. (2017). Transfusi Rasional pada Anak. Sari Pediatri, 18(4), 325–331. https://doi.org/10.14238/SP18.4.2016.325-31 DOI: https://doi.org/10.14238/sp18.4.2016.325-31
Yalcin, O., Ortiz, D., Tsai, A. G., Johnson, P. C., & Cabrales, P. (2014). Microhemodynamic aberrations created by transfusion of stored blood. Transfusion, 54(4), 1015–1027. https://doi.org/10.1111/TRF.12361 DOI: https://doi.org/10.1111/trf.12361
Zetalini, F., Arifin, M., & Yuliana, I. (2019). Efek Lama Penyimpanan Whole Blood AB+ Terhadap Kadar Kalium Serum di Bank Darah RSUD Ulin Banjarmasin. Homeostasis, 2(2), 395–400. https://doi.org/10.20527/HT.V2I2.833