Pollutant removal through phytoremediation: a review
Main Article Content
Abstract
Pollution is a serious problem faced by Indonesia, where many water sources are contaminated by domestic, industrial and agricultural waste. These sources of pollution include fecal waste, household waste, and hazardous chemicals such as heavy metals and microplastics, requiring effective solutions to restore the quality of aquatic ecosystems. Several mechanisms that occur during the phytoremediation process in reducing contaminants in water include phytoextraction, phytostabilization, phytovolatilization and rhizofiltration. The success of the phytoremediation process is influenced by plant characteristics, environmental conditions, and the nature of pollutants. The level of phytoremediation efficiency in reducing pollutants can be estimated using the percentage reduction formula. Observations on plant growth such as biomass weight, root length, and plant height are needed to evaluate plant health and symptoms of phytotoxicity that may arise due to contact with contaminants on plants. Laboratory analysis of spectroscopy or chromatography is needed to determine quantitative data on the accumulation of heavy metals or other hazardous substances.
Downloads
Article Details
Copyright (c) 2024 Rajeev Pratap Singh, Nour Salah Abdeljawad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Abollino, O., Bertinetti, S., & Inaudi, P. (2024). Water treatment by phytoremediation and filtering through agricultural residues. In Water reuse and unconventional water resources: A multidisciplinary perspective (pp. 299–317). Springer.
Ahmad, H., & Adiningsih, R. (2019). Efektivitas metode fitoremediasi menggunakan tanaman eceng gondok dan kangkung air dalam menurunkan kadar bod dan tss pada limbah cair industri tahu. Jurnal Farmasetis, 8(2), 31–38.
Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha Queda, A. (2009). Organic residues as immobilizing agents in aided phytostabilization:(i) effects on soil chemical characteristics. Chemosphere, 74(10), 1292–1300.
Banerjee, A., & Roychoudhury, A. (2022). Assessing the rhizofiltration potential of three aquatic plants exposed to fluoride and multiple heavy metal polluted water. Vegetos, 35(4), 1158–1164.
Beals, M. K. (2021). Phytoremediation efficacy of eastern cottonwood (populous deltoids) to heavy metal contamination [Doctoral dissertation, Southern University, Agricultural, and Mechanical College].
Bhat, S. A., Bashir, O., Haq, S. A. U., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J. H. P., & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788.
Chaudhry, Q., Blom-Zandstra, M., Gupta, S. K., & Joner, E. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environmental Science and Pollution Research, 12, 34–48.
Chen, L., Yang, J. -y., & Wang, D. (2020). Phytoremediation of uranium and cadmium contaminated soils by sunflower (helianthus annuus l.) enhanced with biodegradable chelating agents. Journal of cleaner production, 263, 121491.
Erusani, A. S., Arofah, N., Azahra, F., Nurhasni, N., & Inayah, T. (2024). Phytoremediation of mercury and cyanide contaminated soils by physic nut (jatropha curcas l.) and citronella grass (cymbopogon nardus). Jurnal Ilmu Lingkungan, 22(6), 1581–1593.
Evangelista, F., & Hasan, Z. (2021). Effectiveness of rough horsetail plant (equisetum hyemale) and mexican sword plant (echinodorus paleafolius) as a phythoremediation agent in reducing cadmium metal (cd) in the upper citarum river segment of dayeuhkolot.
Fester, T., Giebler, J., Wick, L. Y., Schlosser, D., & Kästner, M. (2014). Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Current Opinion in Biotechnology, 27, 168–175.
Fouad, F. A., Youssef, D. G., Shahat, F. M., & Abd El-Ghany, M. N. (2022). Role of microorganisms in biodegradation of pollutants. In Handbook of biodegradable materials (pp. 1–40). Springer.
Herlina, L., Widianarko, B., & Sunoko, H. (2020). Phytoremediation potential of cordyline fruticosa for lead contaminated soil. Jurnal Pendidikan IPA Indonesia, 9(1), 42–49.
Hooda, V. (2007). Phytoremediation of toxic metals from soil and waste water. Journal of Environmental Biology, 28(2), 367.
Innah, M. Z., Umar, M. R., et al. (2023). Fitoremediasi tanaman hias bunga impatiens balsamina l., dan zinnia elegans (jacq.) kuntze terhadap polutan merkuri pada tanah:-. BIOMA: JURNAL BIOLOGI MAKASSAR, 8(2), 1–10.
Jain, P., Andotra, A., Aziz, A., Kaur, P., Mahajan, A., & Kumar, A. (2019). Phytoremediation-a miracle technique for waste water treatment. Research Journal of Pharmacy and Technology, 12(4), 2009–2016.
Jeevanantham, S., Saravanan, A., Hemavathy, R., Kumar, P. S., Yaashikaa, P., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environmental technology & innovation, 13, 264–276.
Juhriah, J., La Ganirun, N. F., & Tambaru, E. (2023). Kemampuan tanaman hias bunga impatiens balsamina l. dan mirabilis jalapa l. dalam fitoremediasi tanah tercemar logam kadmium (cd). Jurnal Ilmu Alam dan Lingkungan, 14(1).
Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203.
Kidd, P., Barceló, J., Bernal, M. P., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., & Monterroso, C. (2009). Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 67(1), 243–259.
Konakci, N., Kislioglu, M. S., & Sasmaz, A. (2023). Ni, cr and co phytoremediations by alyssum murale grown in the serpentine soils around guleman cr deposits, elazig turkey. Bulletin of Environmental Contamination and Toxicology, 110(6), 97.
Lara, R., Islam, M., Yamasaki, S., Neogi, S., & Nair, G. (2012). Aquatic ecosystems, human health, and ecohydrology. Treatise on estuarine and coastal science, 263.
Latif, A., Abbas, A., Iqbal, J., Azeem, M., Asghar, W., Ullah, R., Bilal, M., Arsalan, M., Khan, M., Latif, R., et al. (2023). Remediation of environmental contaminants through phytotechnology. Water, Air, & Soil Pollution, 234(3), 139.
Mahmud, M., Lihawa, F., Isa, I., & Patuti, I. M. (2013). Fitoremediasi sebagai alternatif pengurangan limbah merkuri akibat penambangan emas tradisional di ekosistem sungai tulabolo kabupaten bone bolango. Jurnal Sainstek, 7(02).
Marzuki, I., Syahrir, M., Ramli, M., Harimuswarah, M. R., Artawan, I. P., Iqbal, M., et al. (2022). Operasi dan remediasi lingkungan (Vol. 1). TOHAR MEDIA.
Maulana, M. R. (2023). Efektivitas beberapa jenis macrophyta sebagai fitoremediator air irigasi tercemar di sekitar tpa taman krocok bondowoso.
Meena, M., Sonigra, P., & Yadav, G. (2021). Biological-based methods for the removal of volatile organic compounds (vocs) and heavy metals. Environmental science and pollution research, 28(3), 2485–2508.
Nedelkoska, T., & Doran, P. (2000). Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals engineering, 13(5), 549–561.
Neneng, L., & Saraswati, D. (2019). Reklamasi lahan kritis bekas penambangan emas menggunakan metode bioremediasi dan fitoremediasi. EnviroScienteae, 15(2), 216–225.
Purnama, S. G., et al. (2024). Buku ajar epidemiologi kesehatan lingkungan: Pendekatan one health dan penilaian risiko ekologi. MEGA PRESS NUSANTARA.
Purwantari, N. (2007). Reklamasi area tailing di pertambangan dengan tanaman pakan ternak, mungkinkah. Wartazoa, 17(3), 101–108.
Raj, D., Kumar, A., & Maiti, S. K. (2020). Brassica juncea (l.) czern.(indian mustard): A putative plant species to facilitate the phytoremediation of mercury contaminated soils. International Journal of Phytoremediation, 22(7), 733–744.
Retnaningdyah, C., & Arisoesilaningsih, E. (2019). Evaluation of batch culture phytoremediation process using local hydromacrophytes to reduce synthetic pesticide residue in contaminated irrigation water. J. Math. Fund. Sci, 51(2), 112–126.
Salam, M. M. A., Kaipiainen, E., Mohsin, M., Villa, A., Kuittinen, S., Pulkkinen, P., Pelkonen, P., Mehtätalo, L., & Pappinen, A. (2016). Effects of contaminated soil on the growth performance of young salix (salix schwerinii el wolf ) and the potential for phytoremediation of heavy metals. Journal of environmental management, 183, 467–477.
Saleh, R. M. H., Zam, Z. Z., et al. (2024). Fitoremediasi tanaman kangkung air (ipomoea aquatica) terhadap logam besi (fe) pada air sumur. Jurnal Pendidikan Kimia Unkhair (JPKU), 4(1), 7–11.
Sari, N. E. P., Nurlela, N., & Wardoyo, S. E. (2019). Fitoremediasi tanah tercemar logam berat cd dengan menggunakan tanaman hanjuang (cordyline fruticosa). Jurnal Sains Natural, 9(2), 57–65.
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721.
Selvam, S., Jesuraja, K., Venkatramanan, S., Roy, P. D., & Kumari, V. J. (2021). Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south india. Journal of Hazardous Materials, 402, 123786.
Sharma, P., & Pandey, S. (2014). Status of phytoremediation in world scenario. International Journal of Environmental Bioremediation & Biodegradation, 2(4), 178–191.
Siciliano, S., & Germida, J. (1998). Mechanisms of phytoremediation: Biochemical and ecological interactions between plants and bacteria. Environmental reviews, 6(1), 65–79.
Surahmaida, S., & Mangkoedihardjo, S. (2017). Uji kemampuan tanaman jarak pagar (jatropa curcas) dalam meremediasi tanah tercemar logam berat kadmium (cd). Journal Pharmasci, 2(2), 30–34.
Tonelli, F. C. P., Tonelli, F. M. P., Lemos, M. S., & de Melo Nunes, N. A. (2022). Mechanisms of phytoremediation. In Phytoremediation (pp. 37–64). Elsevier.
Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environment international, 30(5), 685–700.
Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils.
Yusuf, D. M., & NUWSP. (2023). Sebagian besar sungai di indonesia tercemar, apa pengaruhnya terhadap penyediaan air minum?