Kuok Ho Daniel Tang


The detection of perfluorochemicals (PFCs) in various environmental compartments has raised attention and driven countermeasures to reduce their prevalence. Phytoremediation provides a feasible option for PFCs removal from the environment. Crops such as maize, carrots, lettuce, tomato and spinach have demonstrated the ability to phytoextract and phytoaccumulate PFCs. The bioconcentration factors (BCFs) of PFCs in plants widely vary with plant types, plant parts, the types of PFCs and the properties of soil. Maize straw for instance was shown to have a high BCF (35.23) for perfluorobutanoic acid in comparison to maize kernel with a BCF of only 0.229 for the same compound. Maize leaves have a BCF of 9.39 for perfluorohexane sulphonic acid and maize roots have a BCF of 8.82 for perfluorooctane sulphonic acid. Carrots were found to degrade fluorotelomers whereas silver birch and long beechfern are good accumulators of numerous PFCs. BCFs of perfluoroalkyl carboxylic acids are usually negatively correlated to the carbon chain lengths due to decreasing aqueous solubilities with increasing carbon chain lengths which impede root uptake of the compounds. PCFs phytoremediation is low cost, less energy intensive, operationally simple and environmentally friendly but has the drawbacks of inconsistent performance, long duration, and lacking evidence on mineralization of perfluoroalkyl substances. The use of non-crop plants for PFCs phytoremediation is promulgated due to concern of food wastage and the biomass generated from phytoremediating plants should ideally be suitable as feedstock for bioenergy production. This review contributes to further advancement of PFCs phytoremediation by addressing its current limitations.


Download data is not yet available.


How to Cite
Tang, K. H. D. (2023). Phytoremediation of perfluorochemicals: A review of its advances, feasibility and limitations. Environmental and Toxicology Management, 3(1), 1–7. https://doi.org/10.33086/etm.v3i1.3724
Perfluorochemicals, perfluoroalkyl substances, phytoextraction, bioconcentration, perfluoroalkyl carboxylic acids


Andrews, D.Q., Naidenko, O.V, 2020. Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States. Environ. Sci. Technol. Lett. 7, 931–936 DOI: https://doi.org/10.1021/acs.estlett.0c00713

Bizkarguenaga, E., Zabaleta, I., Prieto, A., Fernández, L.A., Zuloaga, O., 2016. Uptake of 8:2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from compost-amended soil. Chemosphere 152, 309–317 DOI: https://doi.org/10.1016/j.chemosphere.2016.02.130

Bolan, N., Sarkar, B., Yan, Y., Li, Q., Wijesekara, H., Kannan, K., Tsang, D.C.W., Schauerte, M., Bosch, J., Noll, H., Ok, Y.S., Scheckel, K., Kumpiene, J., Gobindlal, K., Kah, M., Sperry, J., Kirkham, M.B., Wang, H., Tsang, Y.F., Hou, D., Rinklebe, J., 2021. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – To mobilize or to immobilize or to degrade? J. Hazard. Mater. 401, 123892 DOI: https://doi.org/10.1016/j.jhazmat.2020.123892

Brusseau, M.L., Anderson, R.H., Guo, B., 2020. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total Environ. 740, 140017 DOI: https://doi.org/10.1016/j.scitotenv.2020.140017

Fujii, Y., Yan, J., Harada, K.H., Hitomi, T., Yang, H., Wang, P., Koizumi, A., 2012. Levels and profiles of long-chain perfluorinated carboxylic acids in human breast milk and infant formulas in East Asia. Chemosphere 86, 315–321 DOI: https://doi.org/10.1016/j.chemosphere.2011.10.035

Genualdi, S., Beekman, J., Carlos, K., Fisher, C.M., Young, W., DeJager, L., Begley, T., 2022. Analysis of per- and poly-fluoroalkyl substances (PFAS) in processed foods from FDA’s total diet study. Anal. Bioanal. Chem. 414, 1189–1199 DOI: https://doi.org/10.1007/s00216-021-03610-2

Gobelius, L., Lewis, J., Ahrens, L., 2017. Plant uptake of per- and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environ. Sci. Technol. 51, 12602–12610 DOI: https://doi.org/10.1021/acs.est.7b02926

Gredelj, A., Nicoletto, C., Valsecchi, S., Ferrario, C., Polesello, S., Lava, R., Zanon, F., Barausse, A., Palmeri, L., Guidolin, L., Bonato, M., 2020. Uptake and translocation of perfluoroalkyl acids (PFAA) in red chicory (Cichorium intybus L.) under various treatments with pre-contaminated soil and irrigation water. Sci. Total Environ. 708, 134766 DOI: https://doi.org/10.1016/j.scitotenv.2019.134766

Grønnestad, R., Vázquez, B.P., Arukwe, A., Jaspers, V.L.B., Jenssen, B.M., Karimi, M., Lyche, J.L., Krøkje, Å., 2019. Levels, patterns, and biomagnification potential of perfluoroalkyl substances in a terrestrial food Chain in a Nordic Skiing Area. Environ. Sci. Technol. 53, 13390–13397 DOI: https://doi.org/10.1021/acs.est.9b02533

Harrad, S., Wemken, N., Drage, D.S., Abdallah, M.A.-E., Coggins, A.-M., 2019. Perfluoroalkyl Substances in Drinking Water, Indoor Air and Dust from Ireland: Implications for Human Exposure. Environ. Sci. Technol. 53, 13449–13457 DOI: https://doi.org/10.1021/acs.est.9b04604

Hou, J., Li, G., Liu, M., Chen, L., Yao, Y., Fallgren, P.H., Jin, S., 2022. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. Chemosphere 287, 132205 DOI: https://doi.org/10.1016/j.chemosphere.2021.132205

Krippner, J., Falk, S., Brunn, H., Georgii, S., Schubert, S., Stahl, T., 2015. Accumulation Potentials of Perfluoroalkyl Carboxylic Acids (PFCAs) and Perfluoroalkyl Sulfonic Acids (PFSAs) in Maize (Zea mays). J. Agric. Food Chem. 63, 3646–3653 DOI: https://doi.org/10.1021/acs.jafc.5b00012

Kucharzyk, K.H., Darlington, R., Benotti, M., Deeb, R., Hawley, E., 2017. Novel treatment technologies for PFAS compounds: A critical review. J. Environ. Manage. 204, 757–764 DOI: https://doi.org/10.1016/j.jenvman.2017.08.016

Lenka, S.P., Kah, M., Padhye, L.P., 2021. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res. 199, 117187 DOI: https://doi.org/10.1016/j.watres.2021.117187

Li, P., Zhi, D., Zhang, X., Zhu, H., Li, Z., Peng, Y., He, Y., Luo, L., Rong, X., Zhou, Y., 2019. Research progress on the removal of hazardous perfluorochemicals: A review. J. Environ. Manage. 250, 109488 DOI: https://doi.org/10.1016/j.jenvman.2019.109488

Liong, R.M.Y., Hadibarata, T., Yuniarto, A., Tang, K.H.D., Khamidun, M.H., 2021. Microplastic Occurrence in the Water and Sediment of Miri River Estuary, Borneo Island. Water, Air, Soil Pollut. 232, 342 DOI: https://doi.org/10.1007/s11270-021-05297-8

Muir, D., Bossi, R., Carlsson, P., Evans, M., De Silva, A., Halsall, C., Rauert, C., Herzke, D., Hung, H., Letcher, R., Rigét, F., Roos, A., 2019. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment – An update. Emerg. Contam. 5, 240–271 DOI: https://doi.org/10.1016/j.emcon.2019.06.002

Nakayama, S.F., Yoshikane, M., Onoda, Y., Nishihama, Y., Iwai-Shimada, M., Takagi, M., Kobayashi, Y., Isobe, T., 2019. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends Anal. Chem. 121, 115410 DOI: https://doi.org/10.1016/j.trac.2019.02.011

Navarro, I., de la Torre, A., Sanz, P., Porcel, M.Á., Pro, J., Carbonell, G., Martínez, M. de los Á., 2017. Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ. Res. 152, 199–206 DOI: https://doi.org/10.1016/j.envres.2016.10.018

Nganda, A., Kumar, M., Uday, V., Srivastava, P., Deka, B.J., Zitouni, F., Mahlknecht, J., 2023. EI/IOT of PFCs: Environmental impacts/interactions, occurrences, and toxicities of perfluorochemicals. Environ. Res. 218, 114707 DOI: https://doi.org/10.1016/j.envres.2022.114707

Park, M., Wu, S., Lopez, I.J., Chang, J.Y., Karanfil, T., Snyder, S.A., 2020. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 170, 115364 DOI: https://doi.org/10.1016/j.watres.2019.115364

Park, N.-Y., Kho, Y., Kim, J., 2021. Levels of Perfluorinated Compounds in Liquid Milk Products in Korea. J. Food Hyg. Saf. 36, 310-315 DOI: https://doi.org/10.13103/JFHS.2021.36.4.310

Phong Vo, H.N., Ngo, H.H., Guo, W., Hong Nguyen, T.M., Li, J., Liang, H., Deng, L., Chen, Z., Hang Nguyen, T.A., 2020. Poly‐and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation. J. Water Process Eng. 36, 101393 DOI: https://doi.org/10.1016/j.jwpe.2020.101393

Saleem, M., Biondo, O., Sretenović, G., Tomei, G., Magarotto, M., Pavarin, D., Marotta, E., Paradisi, C., 2020. Comparative performance assessment of plasma reactors for the treatment of PFOA; reactor design, kinetics, mineralization and energy yield. Chem. Eng. J. 382, 123031 DOI: https://doi.org/10.1016/j.cej.2019.123031

Sharma, N., Barion, G., Shrestha, I., Ebinezer, L.B., Trentin, A.R., Vamerali, T., Mezzalira, G., Masi, A., Ghisi, R., 2020. Accumulation and effects of perfluoroalkyl substances in three hydroponically grown Salix L. species. Ecotoxicol. Environ. Saf. 191, 110150 DOI: https://doi.org/10.1016/j.ecoenv.2019.110150

Stoiber, T., Evans, S., Naidenko, O. V, 2020. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere 260, 127659 DOI: https://doi.org/10.1016/j.chemosphere.2020.127659

Tang, K., Angela, J., 2019. Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conf. Ser. Mater. Sci. Eng. 495, 12054 DOI: https://doi.org/10.1088/1757-899X/495/1/012054

Tang, K.H.D., 2021. Phytoextraction of Lead: Its Feasibility, Constraints and Concerns. Asian Soil Res. J. 5, 1–9 DOI: https://doi.org/10.9734/asrj/2021/v5i430113

Tang, K.H.D., 2019a. Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons: A Review of Recent Literature. Glob. J. Civ. Environ. Eng. 1, 33–42 DOI: https://doi.org/10.36811/gjcee.2019.110006

Tang, K.H.D., 2019b. Are We Already in a Climate Crisis? Glob. J. Civ. Environ. Eng. 1, 25–32. DOI: https://doi.org/10.36811/gjcee.2019.110005

Tang, K.H.D., Awa, S.H., Hadibarata, T., 2020. Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water. Water, Air, Soil Pollut. 231, 573 DOI: https://doi.org/10.1007/s11270-020-04937-9

Tang, K.H.D., Chai, H.T.J., 2020. The Effect of Fertilizer on Epipremnum Aureum in Phytoremediating Soil Contaminated with Crude Oil. IOP Conf. Ser. Mater. Sci. Eng. 943, 12032 DOI: https://doi.org/10.1088/1757-899X/943/1/012032

Tang, K.H.D., Hadibarata, T., 2022. The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess Biosyst. Eng. 45, 1865–1878 DOI: https://doi.org/10.1007/s00449-022-02793-x

Tang, K.H.D., Kristanti, R.A., 2022. Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess Biosyst. Eng. 45, 1093–1109 DOI: https://doi.org/10.1007/s00449-022-02694-z

Tang, K.H.D., Law, Y.W.E., 2019. Phytoremediation of soil contaminated with crude oil using Mucuna Bracteata. Res. Ecol. 1, 20-30 DOI: https://doi.org/10.30564/re.v1i1.739

Wang, P., Zhang, M., Lu, Y., Meng, J., Li, Q., Lu, X., 2019. Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland. Environ. Int. 129, 76–85 DOI: https://doi.org/10.1016/j.envint.2019.04.072

Wang, Q., Zhao, Z., Ruan, Y., Li, J., Sun, H., Zhang, G., 2018. Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. Sci. Total Environ. 645, 596–602 DOI: https://doi.org/10.1016/j.scitotenv.2018.07.151

Yu, L., Liu, X., Hua, Z., 2022. Occurrence, distribution, and risk assessment of perfluoroalkyl acids in drinking water sources from the lower Yangtze River. Chemosphere 287, 132064 DOI: https://doi.org/10.1016/j.chemosphere.2021.132064

Zhang, D.Q., Wang, M., He, Q., Niu, X., Liang, Y., 2020. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community. Environ. Pollut. 257, 113575 DOI: https://doi.org/10.1016/j.envpol.2019.113575