##plugins.themes.bootstrap3.article.main##

Nur Nadrah Syamimi Mohd Nazri Nabel Kalel Asmel José Luiz Francisco Alves

Abstract

Biometric devices are nowadays common in use for a variety of purposes. The current study aims to assess the bacteria growth on fingerprint scanners and morphological identification of the bacteria. The bacteria growth was determined through the colony forming units followed by morphological identification through hanging drop method and gram staining. The results showed the bacteria growth curve for dilution factor 10-6 showed the most accurate growth curve graph and was chosen for morphological identification. From morphological identification, the bacteria was observed for three days and from observation the bacteria’s growth moderately. Next, from gram staining method, the bacteria appeared reddish which mean its Gram-negative bacteria. Gram-negative bacteria are among the most significant public health problems in the world due to their high resistance to antibiotics so the recommendation is to change the use of biometric devices to more safe ways to avoid the spread of microorganisms in this pandemic era such as using online attendance system and using staff card. This study has been significant because it can confirm the existing of microorganisms on the surface of biometric devices as well as the types of the microbes by determining the bacteria growth and bacteria identification.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
Mohd Nazri, N. N. S., Kalel Asmel, N., & Luiz Francisco Alves, J. (2022). Assessment of microbiological growth on biometric devices. Environmental and Toxicology Management, 2(3), 20–23. https://doi.org/10.33086/etm.v2i3.3567
Section
Articles
Biometric devices, bacteria, gram staining, morphological identification

References

Anzai, A., Kobayashi, T., Linton, N.M., Kinoshita, R., Hayashi, K., Suzuki, A., Yang, Y., Jung, S.-m., Miyama, T., Akhmetzhanov, A.R., and Nishiura, H., 2020. Assessing the impact of reduced travel on exportation dynamics of novel coronavirus infection (COVID-19). J. Clin. Med. 9, 601 DOI: https://doi.org/10.3390/jcm9020601

Berlit, P., 2020. SARS-CoV-2-(„Severe acute respiratory syndrome coronavirus 2“)-Pandemie und neurologie. DGNeurologie. 3, 273-74 DOI: https://doi.org/10.1007/s42451-020-00200-x

Bhatta, D.R., Hamal, D., Shrestha, R., Hosuru Subramanya, S., Baral, N., Singh, R.K., Nayak, N., and Gokhale, S., 2018. Bacterial contamination of frequently touched objects in a tertiary care hospital of Pokhara, Nepal: how safe are our hands? Antimicrob. Resist. Infect. Control. 7, 97 DOI: https://doi.org/10.1186/s13756-018-0385-2

Brochado, A.R., Telzerow, A., Bobonis, J., Banzhaf, M., Mateus, A., Selkrig, J., Huth, E., Bassler, S., Zamarreño Beas, J., Zietek, M., Ng, N., Foerster, S., Ezraty, B., Py, B., Barras, F., Savitski, M.M., Bork, P., Göttig, S., and Typas, A., 2018. Species-specific activity of antibacterial drug combinations. Nature. 559, 259-63 DOI: https://doi.org/10.1038/s41586-018-0278-9

Cherak, Z., Loucif, L., Moussi, A., and Rolain, J.-M., 2021. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J. Glob. Antimicrob. Resist. 25, 287-309 DOI: https://doi.org/10.1016/j.jgar.2021.03.024

Dan, S., Kalantari, M., Kamyabi, A., and Soltani, M., 2022. Synthesis of chitosan-g-itaconic acid hydrogel as an antibacterial drug carrier: optimization through RSM-CCD. Polym. Bull. 79, 8575-98 DOI: https://doi.org/10.1007/s00289-021-03903-7

Do, D., Sarker, M., Chen, S., Lenjani, A., Tikka, P., Bärnighausen, T., and Geldsetzer, P.J.J.o.g.h., 2020. Healthcare worker attendance during the early stages of the COVID-19 pandemic: A longitudinal analysis of fingerprint-verified data from all public-sector secondary and tertiary care facilities in Bangladesh. J. Glob. Health. 10(2), 020509 DOI: https://doi.org/10.7189/jogh.10.020509

Dönmez, S.İ., Needs, S.H., Osborn, H.M.I., Reis, N.M., and Edwards, A.D., 2022. Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques. Lab Chip. 22, 2820-2831 DOI: https://doi.org/10.1039/D2LC00280A

Elezkurtaj, S., Greuel, S., Ihlow, J., Michaelis, E.G., Bischoff, P., Kunze, C.A., Sinn, B.V., Gerhold, M., Hauptmann, K., Ingold-Heppner, B., Miller, F., Herbst, H., Corman, V.M., Martin, H., Radbruch, H., Heppner, F.L., and Horst, D., 2021. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep. 11, 4263 DOI: https://doi.org/10.1038/s41598-021-82862-5

Gerrity, D., Papp, K., Dickenson, E., Ejjada, M., Marti, E., Quinones, O., Sarria, M., Thompson, K., and Trenholm, R.A., 2022. Characterizing the chemical and microbial fingerprint of unsheltered homelessness in an urban watershed. Sci. Total Environ. 840, 156714 DOI: https://doi.org/10.1016/j.scitotenv.2022.156714

Gomez-Barrero, M., Drozdowski, P., Rathgeb, C., Patino, J., Todisco, M., Nautsch, A., Damer, N., Priesnitz, J., Evans, N., and Busch, C., 2022. Biometrics in the era of COVID-19: Challenges and opportunities. IEEE Trans. Technol. Soc. 2102, 09258 DOI: https://doi.org/10.1109/TTS.2022.3203571

Iqbal, M.Z., and Campbell, A.G., 2021. From luxury to necessity: Progress of touchless interaction technology. Technol. Soc. 67, 101796 DOI: https://doi.org/10.1016/j.techsoc.2021.101796

Janik, E., Bartos, M., Niemcewicz, M., Gorniak, L., and Bijak, M., 2021. SARS-CoV-2: Outline, prevention, and decontamination. Pathogens. 10, 114 DOI: https://doi.org/10.3390/pathogens10020114

Kralikova, I., Babusiak, B., and Smondrk, M., 2022. EEG-Based Person Identification during escalating cognitive load. Sensors. 22, 7154 DOI: https://doi.org/10.3390/s22197154

Kusi, J., Scheuerman, P.R., and Maier, K.J., 2020. Emerging environmental contaminants (silver nanoparticles) altered the catabolic capability and metabolic fingerprinting of microbial communities. Aquat. Toxicol. 228, 105633 DOI: https://doi.org/10.1016/j.aquatox.2020.105633

Kusugal, P., Bhat, K.G., Ingalagi, P., Patil, S., and Pattar, G., 2021. Coculture method for in vitro cultivation of uncultured oral bacteria. J. Oral Maxillofac. Pathol. 25, 266-71

Lei, H.-Y., Ding, Y.-H., Nie, K., Dong, Y.-M., Xu, J.-H., Yang, M.-L., Liu, M.-Q., Wei, L., Nasser, M.I., Xu, L.-Y., Zhu, P., and Zhao, M.-Y., 2021. Potential effects of SARS-CoV-2 on the gastrointestinal tract and liver. Biomed. Pharmacother. 133, 111064 DOI: https://doi.org/10.1016/j.biopha.2020.111064

Li, J., Wang, X., Chen, J., Zuo, X., Zhang, H., and Deng, A., 2020. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes. Metab. 22, 1935-41 DOI: https://doi.org/10.1111/dom.14057

Linka, K., Peirlinck, M., Sahli Costabal, F., and Kuhl, E., 2020. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Comput. Methods. Biomech. Biomed. Engin. 23, 710-17 DOI: https://doi.org/10.1080/10255842.2020.1759560

Monowar, T., Rahman, M.S., Bhore, S.J., and Sathasivam, K.V., 2021. Endophytic Bacteria Enterobacter hormaechei fabricated silver nanoparticles and their antimicrobial activity. Pharmaceutics. 13, 511 DOI: https://doi.org/10.3390/pharmaceutics13040511

Nikbakht, F., Mohammadkhanizadeh, A., and Mohammadi, E., 2020. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult. Scler. Relat. Disord. 46, 102535 DOI: https://doi.org/10.1016/j.msard.2020.102535

Noh, D., Lee, W., Son, B., and Kim, J.J.J.o.E.I., 2018. Empirical study on touchless fingerprint recognition using a phone camera. J. Electron Imaging. 27, 033038 DOI: https://doi.org/10.1117/1.JEI.27.3.033038

Norton, P., Guimarães, J.T., Pinho, P., Ribeiro, M., Martins, N., and Mendes, C.P.J.P.B.J., 2021. Bacterial growth and recovery on hospital biometric devices: effect of two types of disinfectants. Porto Biomed J. 6, e088 DOI: https://doi.org/10.1097/j.pbj.0000000000000088

Okereafor, K., Ekong, I., Okon Markson, I., and Enwere, K., 2020. Fingerprint biometric system hygiene and the risk of COVID-19 transmission. JMIR Biomed. Eng. 5, e19623 DOI: https://doi.org/10.2196/19623

Oum, T.H., and Wang, K., 2020. Socially optimal lockdown and travel restrictions for fighting communicable virus including COVID-19. Transp Policy. 96, 94-100 DOI: https://doi.org/10.1016/j.tranpol.2020.07.003

Rafik, H.D., and Boubaker, M. 2020. A Multi Biometric System Based on the right iris and the left iris using the combination of convolutional neural networks. In 2020 Fourth ICDS. 1-10. DOI: https://doi.org/10.1109/ICDS50568.2020.9268737

Rohde, M., 2019. The Gram-Positive bacterial cell wall. Microbiol. Spectr. 7(3),1-21 DOI: https://doi.org/10.1128/microbiolspec.GPP3-0044-2018

Sepehrinezhad, A., Shahbazi, A., and Negah, S.S., 2020. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J. NeuroVirol. 26, 324-29 DOI: https://doi.org/10.1007/s13365-020-00851-2

Zhang, S., Sun, L., Mao, X., Hu, C., and Liu, P., 2021. Review on EEG-based authentication technology. Comput. Intell. Neurosci. 2021, 5229576 DOI: https://doi.org/10.1155/2021/5229576