Biodegradation of an antimicrobial compound triclosan under sulfate reducing condition
##plugins.themes.bootstrap3.article.main##
Abstract
Triclosan is an antibacterial and antifungal agent that is present in many detergents and surgical cleaning treatment products. This antimicrobial compound is discharged from households and collected at the local sewage treatment plant. Because triclosan inhibits phospholipid biosynthesis, it affects the microbial population that perform waste degradation. Sewage treatment plants are the major reservoir of triclosan as the wastewater from various households are discharged and treated in the local sewage treatment plant. This study was conducted to determine whether triclosan degradation occurs in the anaerobic digester of the Thibodaux Sewage Treatment Plant. Bacterial enrichment cultures were developed under various electron acceptor conditions including nitrate-reducing, sulfate-reducing, and mixed electron acceptor condition. The results showed the bacterial consortia developed under various conditions were not inhibited by 100 ppm of triclosan. More than 96% of triclosan was removed in both co-metabolic and triclosan as the sole carbon source conditions under sulfate-reducing condition. The molecular analysis of the consortium showed wide biodiversity of bacteria in the consortium.
Downloads
##plugins.themes.bootstrap3.article.details##
Copyright (c) 2022 Raj Boopathy, Mr. Jacob Cortez
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Ahmed, I., Boulton, A. J., Rizvi, S., Carlos, W., Dickenson, E., Smith, N. A. and Reed, M., 2019. The use of triclosan-coated sutures to prevent surgical site infections: a systematic review and meta-analysis of the literature. BMJ Open. 9, e029727
Alfhili, M. A. and Lee, M.-H., 2019. Triclosan: An Update on Biochemical and Molecular Mechanisms. Oxidative Medicine and Cellular Longevity. 2019, 1607304
Ashrap, P., Zheng, G., Wan, Y., Li, T., Hu, W., Li, W., Zhang, H., Zhang, Z. and Hu, J., 2017. Discovery of a widespread metabolic pathway within and among phenolic xenobiotics. PNAS. 114, 6062-6067
Bedoux, G., Roig, B., Thomas, O., Dupont, V. and Le Bot, B., 2012. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. 19, 1044-1065
Bever, C. S., Rand, A. A., Nording, M., Taft, D., Kalanetra, K. M., Mills, D. A., Breck, M. A., Smilowitz, J. T., German, J. B. and Hammock, B. D., 2018. Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere. 203, 467-473
Boopathy, R., 2007. Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulfate-reducing bacteria. Environmental and engineered systems. Cambridge University Press New York
Boopathy, R., 2017. Anaerobic degradation of atrazine. Int. Biodeterior. Biodegradation. 119, 626-630
Boopathy, R. and Kulpa, C. F., 1992. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacteriumDesulfovibrio sp. (B strain) isolated from an anaerobic digester. Current Microbiology. 25, 235-241
Boopathy, R., Kulpa, C. F. and Wilson, M., 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Applied Microbiology and Biotechnology. 39, 270-275
Calafat, A. M., Ye, X., Wong, L.-Y., Reidy, J. A. and Needham, L. L., 2008. Urinary Concentrations of Triclosan in the U.S. Population: 2003-2004. Environ. Health Perspect. 116, 303-307
Chen, X., Nielsen, J. L., Furgal, K., Liu, Y., Lolas, I. B. and Bester, K., 2011. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere. 84, 452-456
Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M. and Surampalli, R. Y., 2015. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. Int J. Environ Res Public Health. 12, 5657-5684
Drury, B., Scott, J., Rosi-Marshall, E. J. and Kelly, J. J., 2013. Triclosan Exposure Increases Triclosan Resistance and Influences Taxonomic Composition of Benthic Bacterial Communities. Environ. Sci. Technol. 47, 8923-8930
Gorontzy, T., Küver, J. and Blotevogel, K.-H., 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. Microbiology. 139, 1331-1336
Hach, D., 1999. Hach DR/2000 spectrophotometer handbook. Hach, Loveland, CO, USA. 350-390
Halden, R. U., 2014. On the Need and Speed of Regulating Triclosan and Triclocarban in the United States. Environ. Sci. Technol. 48, 3603-3611
Halden, R. U., Lindeman, A. E., Aiello, A. E., Andrews, D., Arnold, W. A., Fair, P., Fuoco, R. E., Geer, L. A., Johnson, P. I., Lohmann, R., McNeill, K., Sacks, V. P., Schettler, T., Weber, R., Zoeller, R. T. and Blum, A., 2017. The Florence Statement on Triclosan and Triclocarban. Environ. Health Perspect. 125, 064501
Hong, B., Ba, Y., Niu, L., Lou, F., Zhang, Z., Liu, H., Pan, Y. and Zhao, Y., 2018. A Comprehensive Research on Antibiotic Resistance Genes in Microbiota of Aquatic Animals. Front. Microbiol. 9, 1-10
Kim, Y.-M., Murugesan, K., Schmidt, S., Bokare, V., Jeon, J.-R., Kim, E.-J. and Chang, Y.-S., 2011. Triclosan susceptibility and co-metabolism – A comparison for three aerobic pollutant-degrading bacteria. Bioresour. Technol. 102, 2206-2212
Lee, D. G., Zhao, F., Rezenom, Y. H., Russell, D. H. and Chu, K.-H., 2012. Biodegradation of triclosan by a wastewater microorganism. Water Res. 46, 4226-4234
Lubarsky, H. V., Gerbersdorf, S. U., Hubas, C., Behrens, S., Ricciardi, F. and Paterson, D. M., 2012. Impairment of the Bacterial Biofilm Stability by Triclosan. PLOS ONE. 7, e31183
Mahitha, P., Gurupadayya, B. and Chandan, R., 2014. Analytical method development and validation of triclosan in dental formulations. Int. J. Pharm. Sci. Res. 5, 3810
McAvoy, D. C., Schatowitz, B., Jacob, M., Hauk, A. and Eckhoff, W. S., 2002. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 21, 1323-1329
Miazek, K. and Brozek-Pluska, B., 2019. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int. J. Mol. Sci. 20, 2492
Petersen, R. C., 2016. Triclosan antimicrobial polymers. AIMS Mol Sci. 3, 88-103
Preuss, A., Fimpel, J. and Diekert, G., 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159, 345-353
Ribado, J. V., Ley, C., Haggerty, T. D., Tkachenko, E., Bhatt, A. S. and Parsonnet, J., 2017. Household triclosan and triclocarban effects on the infant and maternal microbiome. EMBO Mol. Med. 9, 1732-1741
Roh, H., Subramanya, N., Zhao, F., Yu, C.-P., Sandt, J. and Chu, K.-H., 2009. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere. 77, 1084-1089
Skovgaard, S., Nielsen, L. N., Larsen, M. H., Skov, R. L., Ingmer, H. and Westh, H., 2013. Staphylococcus epidermidis Isolated in 1965 Are More Susceptible to Triclosan than Current Isolates. PLOS ONE. 8, e62197
Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K. and Arizono, K., 2004. Effects of triclosan on various aquatic organisms. Environ Sci. 11, 133-140
Valiela, I., 2001. Doing science: design, analysis, and communication of scientific research. Greenwood Publishing Group
Waria, M., O'Connor, G. A. and Toor, G. S., 2011. Biodegradation of triclosan in biosolids-amended soils. Environ. Toxicol. Chem. 30, 2488-2496
Ying, G.-G., Yu, X.-Y. and Kookana, R. S., 2007. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Env. Pol. 150, 300-305
Yueh, M.-F. and Tukey, R. H., 2016. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annual Review of Pharmacology and Toxicology. 56, 251-272