Main Article Content

Sidhi Laksono Lidya Pertiwi Suhandoko

Abstract

Introduction: Nearly half of patients who present with angina have non-obstructed coronary arteries. Patients with chest pain in the absence of obstructive coronary artery disease (CAD) remain a challenge. These patients undergoing invasive coronary angiography do not have epicardial coronary disease obstructive enough to explain these symptoms. This condition is potentially serious and can sometimes trigger severe arrhythmia resulting in ventricular fibrillation and sudden death. However, the pathophysiological mechanisms underlying this phenomenon are incompletely understood, which has resulted in limited therapeutic options for patients afflicted with this condition. This review article provides a comprehensive summary of the underlying pathophysiological mechanisms of VSA and the current therapeutic options. We also appraise the current diagnostic approach in patients with suspected VSA.


Result:


Coronary microvascular tone and subsequently, its blood flow is regulated through various vasodilating and vasoconstricting mechanisms. Coronary endothelial dysfunction and vascular smooth muscle hyperreactivity are proposed mechanism causing coronary artery spams. This may cause transient ST-Elevations, malignant arrhythmias and significant heart blocks. Various non-invasive and invasive exams may identify and differentiate these variant anginas.


Conclusions:


VSA can be diagnosed accurately and safely in the catheter laboratory. The mainstay of management is pharmacological treatment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Laksono, S., & Suhandoko, L. P. (2024). Vasospastic Angina and its Contemporary Review of Pathophysiology, Diagnosis and Management . International Islamic Medical Journal, 5(2), 40–63. https://doi.org/10.33086/iimj.v5i2.5760
Section
Articles
coronary artery spasm, endothelial dysfunction, vascular smooth muscle hyperreactivity, vasospastic angina

References

Beltrame, J. F., Crea, F., Kaski, J. C., Ogawa, H., Ong, P., Sechtem, U., Shimokawa, H., & Bairey Merz, C. N. (2015a). International standardization of diagnostic criteria for vasospastic angina. European Heart Journal, ehv351. https://doi.org/10.1093/eurheartj/ehv351

Beltrame, J. F., Crea, F., Kaski, J. C., Ogawa, H., Ong, P., Sechtem, U., Shimokawa, H., & Bairey Merz, C. N. (2015b). International standardization of diagnostic criteria for vasospastic angina. European Heart Journal, ehv351. https://doi.org/10.1093/eurheartj/ehv351

Curry, R. C., Pepine, C. J., Sabom, M. B., & Conti, C. R. (1979). Similarities of ergonovine-induced and spontaneous attacks of variant angina. Circulation, 59(2), 307–312. https://doi.org/10.1161/01.CIR.59.2.307

Epstein, F. H., Vane, J. R., Änggård, E. E., & Botting, R. M. (1990). Regulatory Functions of the Vascular Endothelium. New England Journal of Medicine, 323(1), 27–36. https://doi.org/10.1056/NEJM199007053230106

Ford, T. J., Rocchiccioli, P., Good, R., McEntegart, M., Eteiba, H., Watkins, S., Shaukat, A., Lindsay, M., Robertson, K., Hood, S., Yii, E., Sidik, N., Harvey, A., Montezano, A. C., Beattie, E., Haddow, L., Oldroyd, K. G., Touyz, R. M., & Berry, C. (2018). Systemic microvascular dysfunction in microvascular and vasospastic angina. European Heart Journal, 39(46), 4086–4097. https://doi.org/10.1093/eurheartj/ehy529

Förstermann, U., & Münzel, T. (2006). Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation, 113(13), 1708–1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

Ginsburg, R., Lamb, I. H., Schroeder, J. S., Hu, M., & Harrison, D. C. (1982). Randomized double-blind comparison of nifedipine and isosorbide dinitrate therapy in variant angina pectoris due to coronary artery spasm. American Heart Journal, 103(1), 44–48. https://doi.org/10.1016/0002-8703(82)90527-0

Goldberg, S., Reichek, N., Wilson, J., Hirshfeld, J. W., Muller, J., & Kastor, J. A. (1979). Nifedipine in the treatment of prinzmetal’s (variant) angina. The American Journal of Cardiology, 44(5), 804–810. https://doi.org/10.1016/0002-9149(79)90201-7

Guidelines for Diagnosis and Treatment of Patients With Vasospastic Angina (Coronary Spastic Angina) (JCS 2013). (2014). Circulation Journal, 78(11), 2779–2801. https://doi.org/10.1253/circj.CJ-66-0098

Halcox, J. P. J., Schenke, W. H., Zalos, G., Mincemoyer, R., Prasad, A., Waclawiw, M. A., Nour, K. R. A., & Quyyumi, A. A. (2002). Prognostic Value of Coronary Vascular Endothelial Dysfunction. Circulation, 106(6), 653–658. https://doi.org/10.1161/01.CIR.0000025404.78001.D8

Higgins, C. B., Wexler, L., Silverman, J. F., & Schroeder, J. S. (1976). Clinical and arteriographic features of Prinzmetal’s variant angina: Documentation of etiologic factors. The American Journal of Cardiology, 37(6), 831–839. https://doi.org/10.1016/0002-9149(76)90106-5

JCS Joint Working Group. (2014). Guidelines for Diagnosis and Treatment of Patients With Vasospastic Angina (Coronary Spastic Angina) (JCS 2013). Circulation Journal, 78(11), 2779–2801. https://doi.org/10.1253/circj.CJ-66-0098

Jespersen, L., Abildstrøm, S. Z., Hvelplund, A., & Prescott, E. (2013). Persistent angina: highly prevalent and associated with long-term anxiety, depression, low physical functioning, and quality of life in stable angina pectoris. Clinical Research in Cardiology, 102(8), 571–581. https://doi.org/10.1007/s00392-013-0568-z

Jespersen, L., Hvelplund, A., Abildstrom, S. Z., Pedersen, F., Galatius, S., Madsen, J. K., Jorgensen, E., Kelbaek, H., & Prescott, E. (2012). Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. European Heart Journal, 33(6), 734–744. https://doi.org/10.1093/eurheartj/ehr331

Kadokami, T., Shimokawa, H., Fukumoto, Y., Ito, A., Takayanagi, T., Egashira, K., & Takeshita, A. (1996). Coronary Artery Spasm Does Not Depend on the Intracellular Calcium Store but Is Substantially Mediated by the Protein Kinase C–Mediated Pathway in a Swine Model With Interleukin-1β In Vivo. Circulation, 94(2), 190–196. https://doi.org/10.1161/01.CIR.94.2.190

Kandabashi, T., Shimokawa, H., Miyata, K., Kunihiro, I., Kawano, Y., Fukata, Y., Higo, T., Egashira, K., Takahashi, S., Kaibuchi, K., & Takeshita, A. (2000). Inhibition of Myosin Phosphatase by Upregulated Rho-Kinase Plays a Key Role for Coronary Artery Spasm in a Porcine Model With Interleukin-1β. Circulation, 101(11), 1319–1323. https://doi.org/10.1161/01.CIR.101.11.1319

Kaski, J.-C., Crea, F., Gersh, B. J., & Camici, P. G. (2018). Reappraisal of Ischemic Heart Disease. Circulation, 138(14), 1463–1480. https://doi.org/10.1161/CIRCULATIONAHA.118.031373

Kaski, J. C., Crea, F., Meran, D., Rodriguez, L., Araujo, L., Chierchia, S., Davies, G., & Maseri, A. (1986). Local coronary supersensitivity to diverse vasoconstrictive stimuli in patients with variant angina. Circulation, 74(6), 1255–1265. https://doi.org/10.1161/01.CIR.74.6.1255

Kaski, J. C., Maseri, A., Vejar, M., Crea, F., Hackett, D., & Halson, P. (1989). Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. Journal of the American College of Cardiology, 14(6), 1456–1463. https://doi.org/10.1016/0735-1097(89)90382-3

KISHIDA, H., OTSU, F., SUZUKI, K., HATA, N., KUSAMA, Y., SUZUKI, T., NEJIMA, J., SAITO, T., & IIDA, N. (1985). Prominent negative u wave in variant angina pectoris. Japanese Heart Journal, 26(6), 885–896. https://doi.org/10.1536/ihj.26.885

KISHIDA, H., TADA, Y., FUKUMA, N., SAITOH, T., KUSAMA, Y., & SANO, J. (1996). Significant Characteristics of Variant Angina Patients with Associated Syncope. Japanese Heart Journal, 37(3), 317–326. https://doi.org/10.1536/ihj.37.317

Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., Prescott, E., Storey, R. F., Deaton, C., Cuisset, T., Agewall, S., Dickstein, K., Edvardsen, T., Escaned, J., Gersh, B. J., Svitil, P., Gilard, M., Hasdai, D., Hatala, R., … Clapp, B. (2020a). 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 41(3), 407–477. https://doi.org/10.1093/eurheartj/ehz425

Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., Prescott, E., Storey, R. F., Deaton, C., Cuisset, T., Agewall, S., Dickstein, K., Edvardsen, T., Escaned, J., Gersh, B. J., Svitil, P., Gilard, M., Hasdai, D., Hatala, R., … Clapp, B. (2020b). 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 41(3), 407–477. https://doi.org/10.1093/eurheartj/ehz425

Konst, R. E., Damman, P., Pellegrini, D., Hartzema-Meijer, M. J., van Uden, B. J. C., Jansen, T. P. J., Brandsma, J., Vart, P., Gehlmann, H., Maas, A. H. E. M., van Royen, N., & Elias-Smale, S. E. (2021). Vasomotor dysfunction in patients with angina and nonobstructive coronary artery disease is dominated by vasospasm. International Journal of Cardiology, 333, 14–20. https://doi.org/10.1016/j.ijcard.2021.02.079

Kuga, T., Shimokawa, H., Hirakawa, Y., Kadokami, Y., Arai, Y., Fukumoto, Y., Kuwata, K., Kozai, T., Egashira, K., & Takeshita, A. (2000). Increased Expression of L-Type Calcium Channels in Vascular Smooth Muscle Cells at Spastic Site in a Porcine Model of Coronary Artery Spasm. Journal of Cardiovascular Pharmacology, 35(5), 822–828. https://doi.org/10.1097/00005344-200005000-00021

Kugiyama, K., Yasue, H., Okumura, K., Ogawa, H., Fujimoto, K., Nakao, K., Yoshimura, M., Motoyama, T., Inobe, Y., & Kawano, H. (1996). Nitric Oxide Activity Is Deficient in Spasm Arteries of Patients With Coronary Spastic Angina. Circulation, 94(3), 266–272. https://doi.org/10.1161/01.CIR.94.3.266

Kunadian, V., Chieffo, A., Camici, P. G., Berry, C., Escaned, J., Maas, A. H. E. M., Prescott, E., Karam, N., Appelman, Y., Fraccaro, C., Louise Buchanan, G., Manzo-Silberman, S., Al-Lamee, R., Regar, E., Lansky, A., Abbott, J. D., Badimon, L., Duncker, D. J., Mehran, R., … Baumbach, A. (2020). An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. European Heart Journal, 41(37), 3504–3520. https://doi.org/10.1093/eurheartj/ehaa503

Lablanche, J. M., Bauters, C., McFadden, E. P., Quandalle, P., & Bertrand, M. E. (1993). Potassium channel activators in vasospastic angina. European Heart Journal, 14(suppl B), 22–24. https://doi.org/10.1093/eurheartj/14.suppl_B.22

Lanza, G. A. (2003). Increased platelet sodium-hydrogen exchanger activity in patients with variant angina. Heart, 89(8), 935–936. https://doi.org/10.1136/heart.89.8.935

Lanza, G. A., Pedrotti, P., Pasceri, V., Lucente, M., Crea, F., & Maseri, A. (1996). Autonomic changes associated with spontaneous coronary spasm in patients with variant angina. Journal of the American College of Cardiology, 28(5), 1249–1256. https://doi.org/10.1016/S0735-1097(96)00309-9

Masumoto, A., Mohri, M., Shimokawa, H., Urakami, L., Usui, M., & Takeshita, A. (2002). Suppression of Coronary Artery Spasm by the Rho-Kinase Inhibitor Fasudil in Patients With Vasospastic Angina. Circulation, 105(13), 1545–1547. https://doi.org/10.1161/hc1002.105938

Miyata, K., Shimokawa, H., Higo, T., Yamawaki, T., Katsumata, N., Kandabashi, T., Tanaka, E., Takamura, Y., Yogo, K., Egashira, K., & Takeshita, A. (2000). Sarpogrelate, a Selective 5-HT2A Serotonergic Receptor Antagonist, Inhibits Serotonin-Induced Coronary Artery Spasm in a Porcine Model. Journal of Cardiovascular Pharmacology, 35(2), 294–301. https://doi.org/10.1097/00005344-200002000-00018

Mohri, M., Shimokawa, H., Hirakawa, Y., Masumoto, A., & Takeshita, A. (2003). Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. Journal of the American College of Cardiology, 41(1), 15–19. https://doi.org/10.1016/S0735-1097(02)02632-3

Myerburg, R. J., Kessler, K. M., Mallon, S. M., Cox, M. M., deMarchena, E., Interian, A., & Castellanos, A. (1992). Life-Threatening Ventricular Arrhythmias in Patients with Silent Myocardial Ischemia Due to Coronary Artery Spasm. New England Journal of Medicine, 326(22), 1451–1455. https://doi.org/10.1056/NEJM199205283262202

Nakayama, M., Yasue, H., Yoshimura, M., Shimasaki, Y., Kugiyama, K., Ogawa, H., Motoyama, T., Saito, Y., Ogawa, Y., Miyamoto, Y., & Nakao, K. (1999). T −786→C Mutation in the 5′-Flanking Region of the Endothelial Nitric Oxide Synthase Gene Is Associated With Coronary Spasm. Circulation, 99(22), 2864–2870. https://doi.org/10.1161/01.CIR.99.22.2864

Newman, C. M., Maseri, A., Hackett, D. R., El-Tamimi, H. M., & Davies, G. J. (1990). Response of angiographically normal and atherosclerotic left anterior descending coronary arteries to acetylcholine. The American Journal of Cardiology, 66(15), 1070–1076. https://doi.org/10.1016/0002-9149(90)90507-W

Nishigaki, K., Inoue, Y., Yamanouchi, Y., Fukumoto, Y., Yasuda, S., Sueda, S., Urata, H., Shimokawa, H., & Minatoguchi, S. (2010). Prognostic Effects of Calcium Channel Blockers in Patients With Vasospastic Angina - A Meta-Analysis -. Circulation Journal, 74(9), 1943–1950. https://doi.org/10.1253/circj.CJ-10-0292

Okumura, K., Yasue, H., Matsuyama, K., Goto, K., Miyag, H., Ogawa, H., & Matsuyama, K. (1988). Sensitivity and specificity of intracoronary injection of acetylcholine for the induction of coronary artery spasm. Journal of the American College of Cardiology, 12(4), 883–888. https://doi.org/10.1016/0735-1097(88)90449-4

Ong, P., Athanasiadis, A., Borgulya, G., Vokshi, I., Bastiaenen, R., Kubik, S., Hill, S., Schäufele, T., Mahrholdt, H., Kaski, J. C., & Sechtem, U. (2014). Clinical Usefulness, Angiographic Characteristics, and Safety Evaluation of Intracoronary Acetylcholine Provocation Testing Among 921 Consecutive White Patients With Unobstructed Coronary Arteries. Circulation, 129(17), 1723–1730. https://doi.org/10.1161/CIRCULATIONAHA.113.004096

Ong, P., Athanasiadis, A., Mahrholdt, H., Borgulya, G., Sechtem, U., & Kaski, J. C. (2012). Increased coronary vasoconstrictor response to acetylcholine in women with chest pain and normal coronary arteriograms (cardiac syndrome X). Clinical Research in Cardiology, 101(8), 673–681. https://doi.org/10.1007/s00392-012-0442-4

Ong, P., Athanasiadis, A., & Sechtem, U. (2013). Patterns of coronary vasomotor responses to intracoronary acetylcholine provocation. Heart, 99(17), 1288–1295. https://doi.org/10.1136/heartjnl-2012-302042

Ong, P., Camici, P. G., Beltrame, J. F., Crea, F., Shimokawa, H., Sechtem, U., Kaski, J. C., & Bairey Merz, C. N. (2018). International standardization of diagnostic criteria for microvascular angina. International Journal of Cardiology, 250, 16–20. https://doi.org/10.1016/j.ijcard.2017.08.068

Perera, D., Berry, C., Hoole, S. P., Sinha, A., Rahman, H., Morris, P. D., Kharbanda, R. K., Petraco, R., & Channon, K. (2023a). Invasive coronary physiology in patients with angina and non-obstructive coronary artery disease: a consensus document from the coronary microvascular dysfunction workstream of the British Heart Foundation/National Institute for Health Research Partnership. Heart, 109(2), 88–95. https://doi.org/10.1136/heartjnl-2021-320718

Perera, D., Berry, C., Hoole, S. P., Sinha, A., Rahman, H., Morris, P. D., Kharbanda, R. K., Petraco, R., & Channon, K. (2023b). Invasive coronary physiology in patients with angina and non-obstructive coronary artery disease: a consensus document from the coronary microvascular dysfunction workstream of the British Heart Foundation/National Institute for Health Research Partnership. Heart, 109(2), 88–95. https://doi.org/10.1136/heartjnl-2021-320718

Prinzmetal, M., Kennamer, R., Merliss, R., Wada, T., & Bor, N. (1959a). Angina pectoris I. A variant form of angina pectoris. The American Journal of Medicine, 27(3), 375–388. https://doi.org/10.1016/0002-9343(59)90003-8

Prinzmetal, M., Kennamer, R., Merliss, R., Wada, T., & Bor, N. (1959b). Angina pectoris I. A variant form of angina pectoris. The American Journal of Medicine, 27(3), 375–388. https://doi.org/10.1016/0002-9343(59)90003-8

Recio-Mayoral, A., Rimoldi, O. E., Camici, P. G., & Kaski, J. C. (2013). Inflammation and Microvascular Dysfunction in Cardiac Syndrome X Patients Without Conventional Risk Factors for Coronary Artery Disease. JACC: Cardiovascular Imaging, 6(6), 660–667. https://doi.org/10.1016/j.jcmg.2012.12.011

Reriani, M., Raichlin, E., Prasad, A., Mathew, V., Pumper, G. M., Nelson, R. E., Lennon, R., Rihal, C., Lerman, L. O., & Lerman, A. (2010). Long-Term Administration of Endothelin Receptor Antagonist Improves Coronary Endothelial Function in Patients With Early Atherosclerosis. Circulation, 122(10), 958–966. https://doi.org/10.1161/CIRCULATIONAHA.110.967406

Sara, J. D., Widmer, R. J., Matsuzawa, Y., Lennon, R. J., Lerman, L. O., & Lerman, A. (2015). Prevalence of Coronary Microvascular Dysfunction Among Patients With Chest Pain and Nonobstructive Coronary Artery Disease. JACC: Cardiovascular Interventions, 8(11), 1445–1453. https://doi.org/10.1016/j.jcin.2015.06.017

Satoh, S., Tomoike, H., Mitsuoka, W., Egashira, S., Tagawa, H., Kuga, T., & Nakamura, M. (1990). Smooth muscles from spastic coronary artery segments show hypercontractility to histamine. American Journal of Physiology-Heart and Circulatory Physiology, 259(1), H9–H13. https://doi.org/10.1152/ajpheart.1990.259.1.H9

Shimokawa, H. (2000). Cellular and Molecular Mechanisms of Coronary Artery Spasm. Japanese Circulation Journal, 64(1), 1–12. https://doi.org/10.1253/jcj.64.1

Shimokawa, H., Suda, A., Takahashi, J., Berry, C., Camici, P. G., Crea, F., Escaned, J., Ford, T., Yii, E., Kaski, J. C., Kiyooka, T., Mehta, P. K., Ong, P., Ozaki, Y., Pepine, C., Rimoldi, O., Safdar, B., Sechtem, U., Tsujita, K., … Merz, C. N. B. (2021). Clinical characteristics and prognosis of patients with microvascular angina: an international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. European Heart Journal, 42(44), 4592–4600. https://doi.org/10.1093/eurheartj/ehab282

Sinha, A., Rahman, H., & Perera, D. (2020). Coronary microvascular disease: current concepts of pathophysiology, diagnosis and management. Cardiovascular Endocrinology & Metabolism, 10(1), 22–30. https://doi.org/10.1097/XCE.0000000000000223

Tonet, E., Pompei, G., Faragasso, E., Cossu, A., Pavasini, R., Passarini, G., Tebaldi, M., & Campo, G. (2021). Coronary Microvascular Dysfunction: PET, CMR and CT Assessment. Journal of Clinical Medicine, 10(9), 1848. https://doi.org/10.3390/jcm10091848

Toyo-oka, T., Aizawa, T., Suzuki, N., Hirata, Y., Miyauchi, T., Shin, W. S., Yanagisawa, M., Masaki, T., & Sugimoto, T. (1991). Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. Circulation, 83(2), 476–483. https://doi.org/10.1161/01.CIR.83.2.476

Yamamoto, H., Yoshimura, H., Noma, M., Kai, H., Suzuki, S., Tajimi, T., Sugihara, M., & Kikuchi, Y. (1992). Preservation of endothelium-dependent vasodilation in the spastic segment of the human epicardial coronary artery by substance P. American Heart Journal, 123(2), 298–303. https://doi.org/10.1016/0002-8703(92)90638-C

YASUE, H., & KUGIYAMA, K. (1997). Coronary Spasm: Clinical Features and Pathogenesis. Internal Medicine, 36(11), 760–765. https://doi.org/10.2169/internalmedicine.36.760

Yasue, H., Nakagawa, H., Itoh, T., Harada, E., & Mizuno, Y. (2008). Coronary artery spasm—Clinical features, diagnosis, pathogenesis, and treatment. Journal of Cardiology, 51(1), 2–17. https://doi.org/10.1016/j.jjcc.2008.01.001

Sidhi Laksono, Faculty of medicine, Universitas Muhammadiyah Prof Dr Hamka

Lidya Pertiwi Suhandoko, Universitas Airlangga