Application of enzymes in drug discovery research: A Review
Main Article Content
Abstract
Enzymes have effectively substituted many conventional chemical catalysts-reliant pharmaceutical drug manufacturing procedures. From this v-prospect, the use of enzymes in drug discovery research is quite encouraging. Numerous enzymes have been demonstrated to perform detoxification at the cellular level, for instance, the antioxidant enzymes, catalase, and superoxide dismutase (SOD). These enzymes work simultaneously to neutralize oxygen-free radical species. The enzyme-mediated pharmaceutical procedures include the synthesis of diverse semi-artificial antibiotics, dynamic enantiomers of medicines through kinetic determination, production of enantiomerically unadulterated types of amino acids, and others. Enzymes are being used to treat cancer and infectious disorders where antibiotics are no longer effective because of antibiotic resistance. Thus, the present article aims to review the diverse use of enzymes in the drug industries and discuss the features of enzymes that make them suitable drug candidates.
Downloads
Article Details
Copyright (c) 2024 Muhammad Akram, Sadat Ali Syed, Narayana K, Shilpa M, Rida Zainab, Muhammad Talha Khalil, Sadia Zafar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Nelson, DL, Lehninger, AL, and Cox MM. Lehninger Principles of Biochemistry. 5th ed., 2008, W.H. Freeman, New York.
Mitchell JB. Curr. Opin. Struct. Biol. 2017; 47, 151.
Brasil BF, Siqueira FG, Salum TFC, Zanette CM and Spier MR.Algal Res. 2017;25, 76.
Kühne W, Verhaltenverschiedenerorganisirter UD . Fermente U. Heidelb VD. Naturhist.-Med. Vereins, Neue Folge. 1877;1(3):190–193.
Vallery R and Devonshire RL, Life of Pasteur, 2003.
Asimov I, Asimov’s Biographical Encyclopedia of Science and Technology, 2nd edition, 1982.
Payen A and Persoz JF, “Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts,” Annales de Chimie et de Physique, 1833; 53:73–92.
Adrio JL, &Demain, AL. Recombinant organisms for the production of industrial products. Bioengineered bugs, 2010; 1(2), 116–131. https://doi.org/10.4161/bbug.1.2.10484.
Gurung, N, Ray, , Bose, S, and Rai, V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed research international, 2013, 329121. https://doi.org/10.1155/2013/329121
Raveendran S, Parameswaran B., Ummalyma SB., Abraham A., Mathew AK, Madhavan, A et al., Applications of Microbial Enzymes in Food Industry. Food technology and biotechnology, 2018;56(1):16–30. https://doi.org/10.17113/ftb.56.01.18.5491
Underkofler LA, Barton RR, and Rennert SS. “Production of microbial enzymes and their applications,” Applied Microbiology, 1957;6(3):212–221.
Copley SD. Curr. Opin. Struct. Biol.2017; 47:167–175.
Cao S, Xu P, Ma Y, Yao X, and Lou W.Chin. J. Catal. 2016;37, 1814–1823.
Liu, X., and Kokare, C., Eds. Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. 2017; pp. 267–298, Academic Press Books, Elsevier.
Li S, Yang X, Yang S, Zhu M, and Wang X. Comput. Struct. Biotechnol. J.2012; 2, e201209017.
Industrial enzymes market to attain revenue of $12.8 bn by 2025, (2019) News-Transparency Market Research. https://www.gminsights.com/industry-analysis/enzymes-market.
Dublin, (2019) Globe Newswire – The “Industrial Enzymes Market - Growth, Trends, and Forecast (2019 - 2024)”. https://www.researchandmarkets.com
Choi, J.-M.; Han, S.-S.; Kim, H.-S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015; 33, 1443–1454.
Sun H. Zhang H, Ang EL, Zhao H. Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorgan. Med. Chem. 2017; 26, 1275–1284.
Sun H. Zhang H. Ang EL & Zhao H. Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorgan. Med. Chem. 2017; 26, 1275–1284.
Deng, Y., Dwaraknath, S., Ouyang, W. O., Matsumoto, C. J., Ouchida, S., & Lu, Y.. Engineering an Oxygen‐Binding Protein for Photocatalytic CO2 Reductions in Water. Angewandte Chemie 2023
Emmanuel, M. A., Bender, S. G., Bilodeau, C., Carceller, J. M., DeHovitz, J. S., Fu, H., ... & Hyster, T. K. (2023). Photobiocatalytic Strategies for Organic Synthesis. Chemical Reviews.
Huisman GW & Collier SJ. On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr. Opin. Chem. Biol. 2013, 17, 284–292.
Panesar, PS, Kumari S & Panesar R. Biotechnological approaches for the production of prebiotics and their potential applications. Crit. Rev. Biotechnol. 2013, 33, 345–364.
Fernandes, P. Enzymes in Food Processing: A Condensed Overview on Strategies for Better Biocatalysts. Enzyme Res. 2010. [CrossRef] [PubMed]
Akoh CC. Chang,SW. Lee, GC. Shaw, JF. Biocatalysis for the Production of Industrial Products and Functional Foods from Rice and Other Agricultural Produce. J. Agric. Food Chem. 2008; 56, 10445–10451.
Kapoor S. Rafiq A & Sharma S. Protein engineering and its applications in food industry. Crit. Rev. Food Sci. Nutr. 2017; 57, 2321–2329.
Melov S, Ravenscroft J, Malik S, Gill MS. Walker DW., Clayton PE., et al.,Science, 2000; 289, 1567–1569
Zhang B. Weng Y. Xu, H & Mao, Z. Enzyme immobilization for biodiesel production. Appl. Microbial. Biotechnol. 2012; 93, 61–67.
Sheldon, RA. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (cleas). Appl. Microbial. Biotechnol. 2011; 92, 467–477.
Jesionowski T. Zdarta, J & Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014; 20, 801–821.
Betancor L & Luckarift, H.R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 2008; 26, 566–572.
Feng,W & Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 2011; 29, 889–895.
Chauhan GS. Evaluation of nanogels as supports for enzyme immobilization. Polym. Int. 2014; 63, 1889–1894.
Schenone M., Dančík V., Wagner BK, & Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nature chemical biology,2013; 9(4), 232–240. https://doi.org/10.1038/nchembio.1199
Prentis RA. Pharmaceutical innovation by the seven U.K.-owned pharmaceutical companies (1964–1985). Br. J. Clin. Pharmacol 1988; 25, 387–396
Li, Y., Meng, Q., Yang, M., Liu, D., Hou, X., Tang, L., Wang, X., Lyu, Y., Chen, X., Liu, K., Yu, A. M., Zuo, Z., & Bi, H. (2019). Current trends in drug metabolism and pharmacokinetics. Acta pharmaceuticaSinica. B, 9(6), 1113–1144. https://doi.org/10.1016/j.apsb.2019.10.001
Obach, RS The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997; 283, 46–58
Mandagere, AK. Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. J. Med. Chem.2002; 45, 304–311
Caldwell GW Compound optimization in early- and late-phase drug development: acceptable pharmacokinetic properties utilizing combined physicochemical, in vitro and in vivo screens. Curr. Opin. Drug Discov. Dev. 2000; 3, 30–4.
Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y: Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 1997; 16:2271-2281.
Baruch A, Greenbaum D, Levy ET, Nielsen PA, Gilula NB, Kumar NM, Bogyo M, Defining a link between gap junction communication, proteolysis, and cataract formation. J Biol Chem 2001; 276:28999-29006
Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF. Engel J, et al., Identification of a protease-dependent invasion pathway in the human malarial parasite, Plasmodium falciparum. Science 2002, In press
McCluskey A, Sim AT & Sakoff JA: Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 2002; 45:1151-1175
Cohen P. Protein kinases- the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002; 1:309-315
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al.: Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921.
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-1249. doi:10.1111/j.1476-5381.2010.01127.x
Davis RL. Mechanism of Action and Target Identification: A Matter of Timing in Drug Discovery [published online ahead of print, 2020 Aug 21]. iScience. 2020;23(9):101487. doi:10.1016/j.isci.2020.101487
Failli M, Paananen J & Fortino V. Prioritizing target-disease associations with novel safety and efficacy scoring methods. Sci Rep, 2019;9:9852. doi:10.1038/s41598-019-46293-7
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al.: The sequence of the human genome. Science 2001; 291:1304-1351.
Mustelin T, Feng GS, Bottini N, Alonso A, Kholod N, BirleD, et al., Protein tyrosine phosphatases. Front Biosci 2002; 7:85-142.
Kumar A & Singh S. Directed evolution: Tailoring biocatalysis for industrial application. Crit Rev Biotechnol, 2013; 33:365-378.
Chapman J, Ismail, AE & Dinu CZ. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts,2018; 8(6):238.
Rasor, J.P & Voss, E. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal. A Gen. 2001; 221:145–158.
Huisman, G.W.; Collier, S.J. On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr. Opin. Chem. Biol. 2013;17: 284–292.
Li T, Liang J. Ambrogelly A. Brennan, T. Gloor, G, Huisman, G. et al. Efficient, chemoenzymatic process for manufacture of the boceprevir bicyclic [3.1.0] proline intermediate based on amine oxidase-catalyzed desymmetrization. J. Am. Chem. Soc. 2012; 134,:6467–6472.
Desai, AA. Sitagliptin manufacture: A compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew. Chem. Int. Ed. 2011;50: 1974–1976.
Goncalves, A. Almeida, L. Silva, A.P. Fontes-Ribeiro C. Ambrosio A.F. Cristovao, A et al., The dipeptidyl peptidase-4 (dpp-4) inhibitor sitagliptin ameliorates retinal endothelial cell dysfunction triggered by inflammation. Biomed. Pharmacother. 2018; 102:833–838.
Sheldon RA. Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Org. Process Res. Dev. 2011;15:213–223
Kjellin, M. Wesslen T, Lofblad E. Lennerstrand, J & Lannergard, A. The effect of the first-generation hcv-protease inhibitors boceprevir and telaprevir and the relation to baseline ns3 resistance mutations in genotype 1: Experience from a small swedish cohort. Upsala J. Med. Sci. 2018; 123:50–56.
Krell HV. Leuchter, AF Cook, IA & Abrams M Evaluation of reboxetine, a noradrenergic anti-depressant, for the treatment of fibromyalgia and chronic low back pain. Psychosomatics 2005;46:379–384.
Hayes, S.T.; Assaf, G.; Checksfield, G.; Cheung, C.; Critcher, D.; Harris, L.; Howard, R.; Mathew, S. Regius, C & Scotney, G. Commercial synthesis of (s,s0-reboxetine succinate: A journey to find the cheapest commercial chemistry for manufacture. Org. Process Res. Dev. 2011; 15:1305–1314.
Martinez CA. Hu S. Dumond Y. Tao J. Kelleher P & Tully L. Development of a Chemoenzymatic Manufacturing Process for Pregabalin. Org. Process Res. Dev. 2008; 12:392–398.
Marouf HM. Effect of Pregabalin Premedication on Emergence Agitation in Children after Sevoflurane Anesthesia: A Randomized Controlled Study. Anesth. Essays Res. 2018; 12:31–35.
de Duve C: The signifiance of lysosome in pathology and medicine. Proc Inst Med Chic 1966;26:73-76
Kurre HA, Ettinger AG, Veenstra DL. Gaynon PS, Franklin, J. Sencer, SF et al. J. Pediatr. Hematol. Oncol. 2002; 24:175.
Veronese F, Calceti P, Schiavon O, and Sergi M. Adv. Drug Deliv. Rev. 2002; 54, 587–606.
Hershfield M: PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin Immunol Immunopathol 1995, 76:228-232.
Lwin, A, Orvisky E, Goker-Alpan O, LaMarca ME, and Sidransky E. Mol. Genet. Metab. 2004; 81:70–73
Lule, VK., Garg, S, Tomar, SK., Khedkar, CD., Nalage, DN., eds. Reference Module in Food Science-Encyclopedia of Food and Health.2016; 43–48, Elsevier.
Parker, A. M., and Watson, R. R., eds. (2017) Nutrients in Dairy and their Implications on Health and Disease. pp. 205–211, Academic Press Books – Elsevier.
Kumar R, Henrissat B., and Coutinho, P. M. Sci. Rep. 2019; 9, 10346.
Hertzler S, Savaiano, DA, Dilk A. Jackson, K. A., Fabrizis, S. N. B., and Suarez, L., eds. Nutrition in the Prevention and Treatment of Disease (4th Edition)–. 2017;pp. 875–892, Academic Press Books – Elsevier.
Wallig, MA., eds Fundamentals of Toxicologic Pathology (3rd Edition). pp. 2018; 395–442, Academic Press Books – Elsevier.
Ergal, İ.; Zech, E.; Hanišáková, N.; Kushkevych, I.; Fuchs, W.; Vítěz, T.; Vítězová, M.; Bochmann, G.; Rittmann, S.K.-M.R. Scale-Up of Dark Fermentative Biohydrogen Production by Artificial Microbial Co-Cultures. Appl. Microbiol. 2022, 2, 215–226, doi:10.3390/applmicrobiol2010015.
MacDonald, A., eds. Brenner’s Encyclopedia of Genetics (Second Edition).2013; pp. 300–303, Elsevier.
Sarkissian, C. N., Shao, Z., Blain, F., Peevers, R., Su, H., Heft, R., Chang, T. M., and Scriver, C. R. Proc. Natl. Acad. Sci. U. S. A. 1999;96, 2339–2344.
Carroccio A. Guarino A, Zuin, G, Verghi R, Berni-Canani R, Fontana, M., et al., Aliment. Pharmacol. Ther. 2001; 15:1619.
Schibli, S, Durie, PR., and Tullis, ED. Current Opin. Pulm. Med. 2002; 8, 542–546.