Main Article Content

Alva Cherry mustamu Difran Nobel Bistara Susanti

Abstract

Halothane and Isoflurane are two frequent inhalation agents used as maintenance anesthesia during surgery. After experiencing anesthesia, many patients experience decreased hemodynamic status as pressure blood, respiration, and pulse. Because that study this expected could determine proper anesthesia for use.Evaluates differences in hemodynamic status post-anesthesia consequence use of halothane and isoflurane.This is a study with quasi pre-post design experiment with a control group design. The samplestudy is all patients undergoing Installation Surgery at Sele Be Solu Hospital, Sorong City, which uses the general anesthesia technique with inhalation of halothane or isofluranefor as many as 21 people. Instrument study use sheet observation to measure pressure, blood, respiration, and pulse During surgery.The Wilcoxon test obtained a score of 0.157 on the pressure blood respondent after getting anesthesia halothane and respondents after getting anesthesia isoflurane, i.e., 0.007.Mann Whitney test shows changes in blood pressure, pulse, and respiration in anesthetized respondents who used halothane and isoflurane score significance of 0.784, 0.576, and 0.307.There is a difference in blood pressure at first and end anesthesia use of isoflurane. No, there is a difference in frequency pulse, initial pulse, and respiration anesthesia, and end anesthesia usesisoflurane. Nothere is a difference in pressure blood, pulse, and respiration at the beginning and end anesthesia useshalothane. There is no difference in blood pressure, pulse, and respiration after general anesthesia uses isoflurane and halothane

Downloads

Download data is not yet available.

Article Details

How to Cite
mustamu, A. C., Nobel Bistara, D. ., & Susanti. (2023). Differences in Halothane and Isofluran Anesthesia on Hemodynamic Status. Journal of Health Sciences, 16(03), 283–292. https://doi.org/10.33086/jhs.v16i03.3812
Section
Articles
halothane, isoflurane, hemodynamics, anesthetics

References

Amsterdam, J., Nabben, T., & van den Brink, W. (2015). Recreational nitrous oxide use: Prevalence and risks. Regulatory Toxicology and Pharmacology : RTP, 73. https://doi.org/10.1016/j.yrtph.2015.10.017 DOI: https://doi.org/10.1016/j.yrtph.2015.10.017

Aronson, J. K. (Ed.). (2016). Isoflurane. In Meyler’s Side Effects of Drugs (Sixteenth Edition) (pp. 336–339). Elsevier. https://doi.org/10.1016/B978-0-444-53717-1.00923-9 DOI: https://doi.org/10.1016/B978-0-444-53717-1.00923-9

Becker, D. E., & Reed, K. L. (2012). Local Anesthetics: Review of Pharmacological Considerations. Anesthesia Progress, 59(2), 90–102. https://doi.org/10.2344/0003-3006-59.2.90 DOI: https://doi.org/10.2344/0003-3006-59.2.90

Becker, D. E., & Rosenberg, M. (2008). Nitrous Oxide and the Inhalation Anesthetics. Anesthesia Progress, 55(4), 124–131. https://doi.org/10.2344/0003-3006-55.4.124 DOI: https://doi.org/10.2344/0003-3006-55.4.124

Benjamin, O., Goyal, A., & Lappin, S. L. (2022). Disease Modifying Anti-Rheumatic Drugs (DMARD). In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK507863/

Brown, E. N., Pavone, K. J., & Naranjo, M. (2018). Multimodal General Anesthesia: Theory and Practice. Anesthesia and Analgesia, 127(5), 1246–1258. https://doi.org/10.1213/ANE.0000000000003668 DOI: https://doi.org/10.1213/ANE.0000000000003668

Cirino, G., Szabo, C., & Papapetropoulos, A. (2023). Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiological Reviews, 103(1), 31–276. https://doi.org/10.1152/physrev.00028.2021 DOI: https://doi.org/10.1152/physrev.00028.2021

de Souza Valente, C. (2022). Anaesthesia of decapod crustaceans. Veterinary and Animal Science, 16, 100252. https://doi.org/10.1016/j.vas.2022.100252 DOI: https://doi.org/10.1016/j.vas.2022.100252

Dobson, G. P. (2020). Trauma of major surgery: A global problem that is not going away. International Journal of Surgery (London, England), 81, 47–54. https://doi.org/10.1016/j.ijsu.2020.07.017 DOI: https://doi.org/10.1016/j.ijsu.2020.07.017

Eis, S., & Kramer, J. (2022). Anesthesia Inhalation Agents Cardiovascular Effects. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK541090/

Franzén, S., Semenas, E., Taavo, M., Mårtensson, J., Larsson, A., & Frithiof, R. (2022). Renal function during sevoflurane or total intravenous propofol anaesthesia: A single-centre parallel randomised controlled study. British Journal of Anaesthesia, 128(5), 838–848. https://doi.org/10.1016/j.bja.2022.02.030 DOI: https://doi.org/10.1016/j.bja.2022.02.030

Fröhlich, E. (2022). Non-Cellular Layers of the Respiratory Tract: Protection against Pathogens and Target for Drug Delivery. Pharmaceutics, 14(5), Article 5. https://doi.org/10.3390/pharmaceutics14050992 DOI: https://doi.org/10.3390/pharmaceutics14050992

Hafen, B. B., & Sharma, S. (2022). Oxygen Saturation. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK525974/

Halogenated Anesthetics. (2012). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases. http://www.ncbi.nlm.nih.gov/books/NBK548851/

Hansen, J., Pohlmann, M., Beckmann, J. H., Klose, P., Gruenewald, M., Renner, J., Lorenzen, U., & Elke, G. (2022). Comparison of oscillometric, non-invasive and invasive arterial pressure monitoring in patients undergoing laparoscopic bariatric surgery – a secondary analysis of a prospective observational study. BMC Anesthesiology, 22, 83. https://doi.org/10.1186/s12871-022-01619-3 DOI: https://doi.org/10.1186/s12871-022-01619-3

Haugen, A. S., Søfteland, E., Almeland, S. K., Sevdalis, N., Vonen, B., Eide, G. E., Nortvedt, M. W., & Harthug, S. (2015). Effect of the World Health Organization Checklist on Patient Outcomes: A Stepped Wedge Cluster Randomized Controlled Trial. Annals of Surgery, 261(5), 821. https://doi.org/10.1097/SLA.0000000000000716 DOI: https://doi.org/10.1097/SLA.0000000000000716

Hawkley, T. F., Preston, M., & Maani, C. V. (2022). Isoflurane. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK532957/

Hudson, A. E., Herold, K. F., & Hemmings, H. C. (2019). 11—Pharmacology of Inhaled Anesthetics. In H. C. Hemmings & T. D. Egan (Eds.), Pharmacology and Physiology for Anesthesia (Second Edition) (pp. 217–240). Elsevier. https://doi.org/10.1016/B978-0-323-48110-6.00011-9 DOI: https://doi.org/10.1016/B978-0-323-48110-6.00011-9

Klincová, M., Štěpánková, D., Schröderová, I., Klabusayová, E., & Štourač, P. (2022). Malignant Hyperthermia in PICU—From Diagnosis to Treatment in the Light of Up-to-Date Knowledge. Children, 9(11), Article 11. https://doi.org/10.3390/children9111692 DOI: https://doi.org/10.3390/children9111692

Miller, A. L., Theodore, D., & Widrich, J. (2022). Inhalational Anesthetic. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK554540/

Moen, J. M., Morrell, C. H., Matt, M. G., Ahmet, I., Tagirova, S., Davoodi, M., Petr, M., Charles, S., de Cabo, R., Yaniv, Y., & Lakatta, E. G. (2022). Emergence of heartbeat frailty in advanced age I: Perspectives from life-long EKG recordings in adult mice. GeroScience, 44(6), 2801–2830. https://doi.org/10.1007/s11357-022-00605-4 DOI: https://doi.org/10.1007/s11357-022-00605-4

Morimoto, Y., Hayashi, M., Yao, Y., Nishizaki, H., Ishii, H., Mikuzuki, L., & Hara, K. (2022). Comparison of intravenous sedation using midazolam versus dexmedetomidine in elderly patients with dementia: A randomized cross-over trial. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-10167-2 DOI: https://doi.org/10.1038/s41598-022-10167-2

Scheiermann, P., Herzog, F., Siebenhofer, A., Strametz, R., & Weberschock, T. (2018). Intravenous versus inhalational anesthesia for pediatric inpatient surgery—A systematic review and meta-analysis. Journal of Clinical Anesthesia, 49, 19–25. https://doi.org/10.1016/j.jclinane.2018.05.014 DOI: https://doi.org/10.1016/j.jclinane.2018.05.014

Shimizu, M., Mi, X., Toyoda, F., Kojima, A., Ding, W.-G., Fukushima, Y., Omatsu-Kanbe, M., Kitagawa, H., & Matsuura, H. (2022). Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism. Biomolecules, 12(4), Article 4. https://doi.org/10.3390/biom12040570 DOI: https://doi.org/10.3390/biom12040570

Shoroghi, M., Farahbakhsh, F., Sheikhvatan, M., Sheikhfathollahi, M., Abbasi, A., & Talebi, A. (2011). Anesthetic recovery and hemodynamic effects of continuous thiopental infusion versus halothane for maintenance anesthesia in patients undergoing ocular surgery. Acta Cirúrgica Brasileira, 26, 207–213. https://doi.org/10.1590/S0102-86502011000300009 DOI: https://doi.org/10.1590/S0102-86502011000300009

Sorrenti, V., Cecchetto, C., Maschietto, M., Fortinguerra, S., Buriani, A., & Vassanelli, S. (2021). Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. International Journal of Molecular Sciences, 22(3), Article 3. https://doi.org/10.3390/ijms22031286 DOI: https://doi.org/10.3390/ijms22031286

Staheli, B., & Rondeau, B. (2022). Anesthetic Considerations In The Geriatric Population. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK572137/

Ullal, T. V., Marks, S. L., Belafsky, P. C., Conklin, J. L., & Pandolfino, J. E. (2022). A Comparative Assessment of the Diagnosis of Swallowing Impairment and Gastroesophageal Reflux in Canines and Humans. Frontiers in Veterinary Science, 9, 889331. https://doi.org/10.3389/fvets.2022.889331 DOI: https://doi.org/10.3389/fvets.2022.889331

Villeneuve, M. Y., & Casanova, C. (2003). On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex. Journal of Neuroscience Methods, 129(1), 19–31. https://doi.org/10.1016/s0165-0270(03)00198-5 DOI: https://doi.org/10.1016/S0165-0270(03)00198-5

Watanabe, R., Monteiro, B. P., Ruel, H. L. M., Cheng, A., Marangoni, S., & Steagall, P. V. (2022). The Effects of Sedation with Dexmedetomidine–Butorphanol and Anesthesia with Propofol–Isoflurane on Feline Grimace Scale Scores. Animals, 12(21), Article 21. https://doi.org/10.3390/ani12212914 DOI: https://doi.org/10.3390/ani12212914

Alva Cherry mustamu, Department of Nursing, Ministry of Health Health Polytechnic Sorong, West Papua, Indonesia

Difran Nobel Bistara, Departement of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia

Susanti, Departement of Nursing, STIKES Adi Husada, Surabaya, Indonesia