Classifying Dental Caries Types Using Panoramic Dental Images Using Watershed Method and Multiclass Support Vector Machine
Main Article Content
Abstract
Teeth are one of the calcified and hard structures found in the human mouth. One of the tooth defects that often appears and is experienced by several people in the world is damage caused by dental caries. Diseases that can arise from dental caries include swelling of the gums and fever in the body. To classify and determine the level of damage in dental disease, dentists usually utilise examinations through dental panoramic images. Dental panoramic images are digital images of x-rays that can help provide a lot of information about teeth such as cavities or tooth structure. However, the problem that occurs sometimes to identify or classify the type of caries is still found to be a mismatch of analysis so that technological aids are needed to provide analysis or decision support. Therefore, by applying digital image processing technology by applying methods in image processing, namely Watershed segmentation and the Multiclass Support Vector Machine method, it is possible to classify the type of caries using dental panoramic images. From the results of the research conducted, it can be explained that the results of segmentation of dental panoramic images using the Watershed method can show the detected caries area spots. Meanwhile, the use of the Multiclass SVM method for the classification method shows accuracy results reaching 88%.
Downloads
Article Details
Copyright (c) 2024 Rangga Pahlevi Putra Putra, S.Pd., M.T., Aviv Yuniar Rahman
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
H. Hasnita, S. Anraeni, and F. Umar, “Klasifikasi Penyakit Periodontal Pada Citra Panoramic Gigi Dengan Ekstraksi Fitur Gray Level Co-Occurrence Matrix (GLCM),” Buletin Sistem Informasi dan Teknologi Islam, vol. 2, no. 4, pp. 284–288, Nov. 2021, doi: 10.33096/busiti.v2i4.1013.
A. S. A.-M. AL-Ghamdi, M. Ragab, S. A. AlGhamdi, A. H. Asseri, R. F. Mansour, and D. Koundal, “Detection of Dental Diseases through X-Ray Images Using Neural Search Architecture Network,” Comput Intell Neurosci, vol. 2022, pp. 1–7, Apr. 2022, doi: 10.1155/2022/3500552.
L. G. Zanini, I. R. Rubira-Bullen, and F. de L. Nunes, “Segmentation and Classification of Dental Caries in Cone Beam Tomography Images Using Machine Learning and Image Processing,” in Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies, SCITEPRESS - Science and Technology Publications, 2024, pp. 428–435. doi: 10.5220/0012365300003657.
D. N. D. Iriantoro, C. Dewi, and D. Fitriani, “Klasifikasi pada Penyakit Dental Caries Menggunakan Gabungan K-Nearest Neighbor dan Algoritme Genetika,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 8, pp. 2926–2932, 2018.
Rutuja Madhukar Kale and Asst Prof. Arjumand Masood Khan, “DENTAL CARIES DETECTION AND CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK,” International Journal Of Creative Research Thoughts (IJCRT), vol. 12, no. 4, pp. 216–226, Apr. 2024.
M. P. Muresan, A. R. Barbura, and S. Nedevschi, “Teeth Detection and Dental Problem Classification in Panoramic X-Ray Images using Deep Learning and Image Processing Techniques,” in 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), IEEE, Sep. 2020, pp. 457–463. doi: 10.1109/ICCP51029.2020.9266244.
Y. Lu, Z. Jiang, T. Zhou, and S. Fu, “An Improved Watershed Segmentation Algorithm of Medical Tumor Image,” IOP Conf Ser Mater Sci Eng, vol. 677, no. 4, p. 042028, Dec. 2019, doi: 10.1088/1757-899X/677/4/042028.
R. Khan and T. Mehmood, “Classification of Thoracic Diseases Based on Chest X-ray Images Using Kernel Support Vector Machine,” Math Probl Eng, vol. 2022, pp. 1–9, Nov. 2022, doi: 10.1155/2022/9457730.
L. W. Widianti, S. Madenda, J. Harlan, S. Sudiro, and F. Pramanik, “Generation of Teeth Caries Features for Human Dental Caries Classification,” Jurnal Telekomunikasi dan Komputer, vol. 11, no. 3, p. 254, Dec. 2021, doi: 10.22441/incomtech.v11i3.13804.
H. Nugroho, M. Hakimah, and A. W. Azinar, “IMAGE ENHANCEMENT CITRA ZOOM DENGAN MENGGUNAKAN METODE BILINEAR INTERPOLATION DARI KAMERA WEBCAM,” Network Engineering Research Operation, vol. 4, no. 2, May 2019, doi: 10.21107/nero.v4i2.125.
S. Saifullah, “Segmentasi Citra Menggunakan Metode Watershed Transform Berdasarkan Image Enhancement Dalam Mendeteksi Embrio Telur,” Systemic: Information System and Informatics Journal, vol. 5, no. 2, pp. 53–60, Mar. 2020, doi: 10.29080/systemic.v5i2.798.
R. Riries et al., “Cervical single cell of squamous intraepithelial lesion classification using shape features and extreme learning machine,” J Phys Conf Ser, vol. 1816, no. 1, p. 012081, Feb. 2021, doi: 10.1088/1742-6596/1816/1/012081.
I. P. Wardhani, A. M. Putri, S. Widayati, and others, “Algoritma Identifikasi Ciri Citra Pegunungan dengan Metode Copping,” Jurnal Ilmiah Komputasi, vol. 20, no. 2, pp. 283–290, 2021.
R. P. Putra, “Identifikasi jenis tanaman anggrek melalui tekstur bunga dengan tapis Gabor dan M-SVM,” JOINTECS (Journal of Information Technology and Computer Science), vol. 6, no. 1, pp. 29–34, 2021.
C. Purnama Yanti and I. G. Andika, “HSV image classification of ancient script on copper Kintamani inscriptions using GLRCM and SVM,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 94–99, Apr. 2020, doi: 10.14710/jtsiskom.8.2.2020.94-99.
A. Andreansyah, R. F. Gusa, and M. Jumnahdi, “Pengenalan Pola Sidik Jari Menggunakan Multi-Class Support Vector Machine,” ELKHA: Jurnal Teknik Elektro, vol. 11, no. 2, pp. 79–84, 2019.
C. Wijaya, H. Irsyad, and W. Widhiarso, “KLASIFIKASI PNEUMONIA MENGGUNAKAN METODE K-NEAREST NEIGHBOR DENGAN EKSTRAKSI GLCM,” Jurnal Algoritme, vol. 1, no. 1, pp. 33–44, Oct. 2020, doi: 10.35957/algoritme.v1i1.431.