Vehicle Safe Distance Detection System Based On Image Processing As Accident Prevention With Faster R-CNN Method
Main Article Content
Abstract
Numerous victims and huge economic and social losses have resulted from the escalating number of traffic accidents. From these issues, a technique to create a camera capable of detecting vehicles going around the driver using the Faster R-CNN method and calculating the vehicle's distance using the Stereo Vision and Mono Vision methods was discovered. The determination of safe distance between these cars is determined by the speed of the driver's vehicle, with the LED and buzzer warning system activating when the parameters are met. Based on the results of object detection experiments utilizing the Faster R-CNN, the model's success rate in identifying and classifying objects had an average success rate of 83.33 percent across 35 object situations examined from different perspectives. The success rates for distance estimates utilizing the Stereo Vision and Mono Vision methods with the Linear Regression equation were 98.84% and 98.10%, respectively.
Downloads
Article Details
Copyright (c) 2022 Agus Khumaidi Khumaidi, Elok A Chandra, Perwi Darmajanti, Ivan A. Septiadi, Sryang T. Sarena
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
A. H. W. Fahza, “Analisis Daerah Rawan Kecelakaan Lalu Lintas pada Ruas Jalan Tol Surabaya-Gempol,” Jurnal Teknik ITS, vol. 8, no. 1, 2019.
B. P. Statistika, “Jumlah Kecelakaan, Korban Mati, Luka Berat,,” Badan Pusat Statistika, 18 Agustus 2022. [Online]. Available: https://www.bps.go.id/indicator/17/513/1/jumlah-kecelakaan-korban-matiluka-berat-luka-ringan-dan-kerugian-materi.html. [Diakses 2022 Agustus 2022].
B. P. J. Tol, “Peran BPJT dalam Mengantisipasi Perkembangan Jalan Tol Trans Jawa dari Aspek Ekonomi, Sosial, dan Standar Pelayana,” Badan Pengatur Jalan Tol, 2020. [Online]. Available: https://balitbanghub.dephub.go.id/file/222. [Diakses 15 Agustus 2022].
S. Megawan, “Face Spoofing Detection Using Faster R-CNN with Resnet50 Architecture on Video,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 9, no. 3, pp. 261 - 267, 2020.
A. Khumaidi, “Welding Defect Classification Based on Convolution Neural Network (CNN) and Gaussian Kernel,” dalam Intelligent Technology and Its Applications (ISITIA) 2017, Surabaya, Indonesia, 2017.
S. Kaul, Region Based Convolutional Neural Networks for Object Detection and Recognition in Adas Application, United States: The University of Texas at Arlington, 2017.
T. Urip, Pengukuran Jarak Objek Pejalan Kaki Terhadap Kamera Menggunakan Kamera Stereo Terkalibrasi dengan Segmentasi Histogram of Oriented Gradient, Semarang: Universitas Diponegoro, 2017.
I. Marzuqi, “Segmentasi dan Estimasi Jarak Bola dengan Robot Menggunakan Stereo Vision,” dalam 5th Indonesian Symposium on Robotic Systems and Control, Bandung, Universitas Pendidikan Indonesia, 2017.
F. P. A. Rais Bastomi, “Object Detection and Distance Estimation Tool for Blind People Using Convolutional Methods with Stereovision,” dalam 2019 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 2019.
P. R. Indonesia, Peraturan Pemerintah Republik Indonesia No. 43 Tahun 1993 Tentang Prasarana dan Lalu Lintas Jalan, Presiden Republik Indonesia, 1993.
Otoklik, “Segini Jarak Aman Berkendara Menurut Aturan yang Berlaku,” otoklix.com, 19 November 2022. [Online]. Available: https://otoklix.com/blog/jarak-aman-berkendara. [Diakses 29 November 2022].
Y. N. Deta, Klasifikasi Jenis Lubang Kerusakan Jalan Menggunakan Faster Region Convolutional Neural Network dengan Pengambilan Data Secara Vertikal dan Horizontal, Sumatera Utara, Indonesia: Universitas Sumatera Utara, 2021.
F. M. Dirgantara, “Object Distance Measurement System Using Monocular Camera on Vehicle,” dalam 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia, 2019.
P. P. Adikara, “Regresi linier berbasis clustering untuk deteksi dan estimasi halangan pada smart wheelchair,” Jurnal Ilmiah Teknologi Sistem Informasi, vol. 3, no. 1, pp. 11-16, 2016.