Implementation of Additive Ratio Assessment (ARAS) in Decision Support Systems for Wi-Fi Repeater Selection
Main Article Content
Abstract
Wi-Fi repeater devices are important tools for individuals, agencies, and companies so that the desired areas can be connected to the internet. To select a Wi-Fi repeater, take care in selecting the right product for your needs. However, not everyone has knowledge regarding the specifications of a Wi-Fi repeater. This resulted in a long process of selecting a Wi-Fi repeater because they had to find information regarding the specifications of the product to be purchased. This has an impact on the length of the process of making decisions. The purpose of this research is to build a decision support system using the Multi-Attribute Decision Making (MADM) approach and the Additive Ratio Assessment (ARAS) method for selecting the right Wi-Fi repeater device as needed. Referring to the utility level of each alternative to determine the ranking, the ARAS technique has the ability to choose the best alternative. Using the ARAS approach for case studies, which is identical to manual calculations, the developed system produces the same results, according to the case studies that have been completed. The DSS developed is website-based, with main features including managing data extraction, data alternatives, value alternatives, ARAS calculation methods, and displaying the best alternative in the form of ranking. Additionally, testing utilizing black-box testing reveals that all of the evaluated functions can function as they should.
Downloads
Article Details
Copyright (c) 2022 Indra Nanda, Rhaishudin Jafar Rumandan, Alfry Aristo Jansen Sinlae
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
H. Yuliandoko, Jaringan Komputer Wire dan Wireless Beserta Penerapannya. Sleman: Deepublish, 2018.
M. Diponegoro, R. Rusman, W. Yuniarto, and S. Bibi, “Optimasi Kinerja Jaringan Wireless Menggunakan Repeater Berbasis Open DD-WRT Dengan Metode Drive Test Studi Kasus Pada Jaringan Internet Jurusan Teknik Elektro Politeknik Negeri Pontianak,” Elit J. - Electrotech. Inf. Technol., vol. 3, no. 1, pp. 11–19, 2022.
Z. M. Bhakti, S. Raharjo, and M. Sholeh, “Analisis Kinerja Wireless Point to Point Multipoint Client Bridge dan Repeater Pada Frekuensi 2.4 Ghz,” J. JARKOM, vol. 3, no. 2, pp. 12–21, 2017.
R. I. Borman and H. Fauzi, “Penerapan Metode Perbandingan Eksponensial (MPE) Dalam Sistem Pendukung Keputusan Penerimaan Beasiswa Siswa Berprestasi Pada SMK XYZ,” CESS J. Comput. Eng. Syst. Sci., vol. 3, no. 1, pp. 17–22, 2018.
R. I. Borman, D. A. Megawaty, and A. Attohiroh, “Implementasi Metode TOPSIS Pada Sistem Pendukung Keputusan Pemilihan Biji Kopi Robusta Yang Bernilai Mutu Ekspor (Studi Kasus: PT. Indo Cafco Fajar Bulan Lampung),” Fountain Informatics J., vol. 5, no. 1, pp. 14–20, 2020, doi: 10.21111/fij.v5i1.3828.
A. Jayady et al., “Decision Support System with Multi Criteria Decision Making Technique,” in Virtual Conference on Engineering, Science and Technology (ViCEST), 2021, pp. 1–8. doi: 10.1088/1742-6596/1933/1/012017.
M. Ghram and H. Frikha, “Multiple Criteria Hierarchy Process within ARAS method,” in International Conference on Control, Decision and Information Technologies, 2019, pp. 995–1000.
D. T. S. L. Batu, M. Syahrizal, and I. Ikwan, “Sistem Pendukung Keputusan Pemilihan Wireless Router Menggunakan Metode Promethee (Studi Kasus: My Republic Medan),” J. Pelita Inform., vol. 7, no. 1, pp. 11–15, 2018.
R. Nuraini, Y. Daniarti, I. P. Irwansyah, A. A. J. Sinlae, and S. Setiawansyah, “Fuzzy Multiple Attribute Decision Making Menggunakan TOPSIS Pada Sistem Pendukung Keputusan Pemilihan Wireless Router,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 411–419, 2022, doi: 10.30865/jurikom.v9i2.4065.
A. Rahmadhani, R. Z. Harahap, A. Aziza, S. K. Wardani, and S. Aripin, “Sistem Pendukung Keputusan Pemilihan Provider Wifi (Wireless Fidelity) Jaringan Terbaik di Aek Kanopan dengan Metode Weighted AggregatedSumProductAssessment (WASPAS),” in Seminar Nasional Ilmu Sosial dan Teknologi (SANISTEK), 2021, pp. 54–59.
R. A. S. Prayoga and P. Susanti, “Sistem Pendukung Keputusan Pemilihan Perumahan dengan Metode ARAS (Studi Kasus Kabupaten Ponorogo),” J. Sains dan Inform., vol. 8, no. 1, pp. 31–40, 2022, doi: 10.34128/jsi.v8i1.387.
S. Bakri and H. Haerudin, “Penerapan Metode Aras (Additive Rasio Assement) Dalam Penilaian Kinerja Karyawan Terbaik,” OKTAL J. Ilmu Komput. dan Sains, vol. 1, no. 06, pp. 641–648, 2022.
J. Hutagalung, B. Anwar, and S. Santoso, “Implementasi Metode Additive Ratio Assessment (ARAS) Untuk Menentukan Siswa Terbaik,” Techno.COM, vol. 21, no. 3, pp. 462–474, 2022.
R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), 2021, pp. 46–50. doi: 10.1109/ICOMITEE53461.2021.9650176.
I. Ahmad, E. Suwarni, R. I. Borman, A. Asmawati, F. Rossi, and Y. Jusman, “Implementation of RESTful API Web Services Architecture in Takeaway Application Development,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 132–137. doi: 10.1109/ICE3IS54102.2021.9649679.
N. Y. Arifin et al., Analisa Perancangan Sistem Informasi. Batam: Cendikia Mulia Mandiri, 2021.
R. I. Borman, M. Mayangsari, and M. Muslihudin, “Sistem Pendukung Keputusan Menentukan Lokasi Perumahan Di Pringsewu Selatan Menggunakan Fuzzy Multiple Attribute Decision Making,” JTKSI (Jurnal Teknol. Komput. dan Sist. Informasi), vol. 01, no. 01, pp. 5–9, 2018, doi: 10.56327/jtksi.v1i1.874.
D. Simarmata, D. M. Midyanti, and R. Hidayati, “Implementasi Metode Additive Ratio Assement (ARAS) Untuk Rekomendasi Pasien Kunjungan Sehat Pada Fasilitas Keshatan Tingkat Pertama Dr Josepb Nugroho H. S.,” Coding J. Komput. dan Apl., vol. 07, no. 03, pp. 109–119, 2019.
G. Büyüközkan and F. Göcer, “An extension of ARAS methodology under Interval Valued Intuitionistic Fuzzy environment for Digital Supply Chain,” Appl. Soft Comput., vol. 69, pp. 634–654, 2018, doi: 10.1016/j.asoc.2018.04.040.
R. T. Lubis, F. Rizky, and R. Gunawan, “Penentuan Mutasi Karyawan Menggunakan Metode Additive Ratio Assesment (ARAS),” J. Sist. Infromasi TGD, vol. 1, no. 1, pp. 41–52, 2022.
R. I. Borman, A. T. Priandika, and A. R. Edison, “Implementasi Metode Pengembangan Sistem Extreme Programming (XP) pada Aplikasi Investasi Peternakan,” JUSTIN (Jurnal Sist. dan Teknol. Informasi), vol. 8, no. 3, pp. 272–277, 2020, doi: 10.26418/justin.v8i3.40273.
I. Ahmad, Y. Rahmanto, D. Pratama, and R. I. Borman, “Development of augmented reality application for introducing tangible cultural heritages at the lampung museum using the multimedia development life cycle,” Ilk. J. Ilm., vol. 13, no. 2, pp. 187–194, 2021.
R. I. Borman, B. Priopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo),” in Seminar Nasional Informatika dan Aplikasinya (SNIA), 2017, no. September, pp. 1–4.
I. Ahmad, R. I. Borman, J. Fakhrurozi, and G. G. Caksana, “Software Development Dengan Extreme Programming (XP) Pada Aplikasi Deteksi Kemiripan Judul Skripsi Berbasis Android,” J. Invotek Polbeng - Seri Inform., vol. 5, no. 2, pp. 297–307, 2020.