Main Article Content

Zilvanhisna Emka Fitri Mega Silvia Abdul Madjid AMN Imron Lalitya Nindita Sahenda

Abstract

Dragon fruit is a unique fruit that is popular in Indonesia. besides having a sweet taste, this fruit also contains fiber, vitamins and minerals that are good for health. Dinas Pertanian Kabupaten Banyuwangi noted that the total dragon fruit production was 906,511.61 tons and the total productivity was 261.14 Kw/Ha in 2018. This shows that Kabupaten Banyuwangi is one of the largest producers of red dragon fruit in East Java Province. One of the problems in determining the quality of dragon fruit is choosing the harvest time, considering that dragon fruit is a non-climatic fruit. Non-climateric fruit is when we harvest fruit in its raw state, the fruit will never become ripe, so determining the harvest time for dragon fruit is very important. The determination made by paying discoloration and sizes of dragon fruit that is considered less effective. To overcome this, a system was created that was able to determine the level of dragon fruit maturity automatically by utilizing digital image processing techniques and intelligent systems. The parameters used are color features and GLCM texture features using angles 0°, 45°, 90° and 135° These features are parameters in the classification process using the Naïve Bayes method. Naïve bayes is able to classify the level of maturity of red dragon fruit (Hylocereus costaricensis) with an accuracy rate of 87.37%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fitri, Z. E., Silvia, M., Madjid, A. ., Imron, A. M. N., & Sahenda, L. N. (2022). Red Dragon Fruit (Hylocereus costaricensis) Ripeness Color Classification by Naïve Bayes Algorithm. Applied Technology and Computing Science Journal, 5(1), 21–28. https://doi.org/10.33086/atcsj.v5i1.3690
Section
Articles
computer vision, dragon fruit, GLCM, Naive Bayes, Maturity

References

F. Maulida, W. D. Widodo, dan K. Suketi, “Kriteria Kematangan Pascapanen Buah Naga Merah (Hylocereus polyrhizus (Weber) Britton & Rose) dengan Umur Panen yang Berbeda.,” IPB University, 2018.

D. P. K. Banyuwangi, “Data Tahunan Bidang Perkebunan dan Hortikultura,” Dinas Pertanian Kabupaten Banyuwangi, 2018. https://dinaspertanian.banyuwangikab.go.id (diakses Agu 15, 2022).

D. Fitrada, “APLIKASI IMAGE PROCESSING UNTUK MENENTUKAN TINGKAT MUTU BUAH NAGA (Hylocereus undatus) SECARA NON-DESTRUCTIVE,” INSTITUT PERTANIAN BOGOR, 2010.

Sustiono dan W. S. Pambudi, “Rancang Bangun Alat Pemilihan Kualitas Kematangan Buah Naga Menggunakan TeknikImage Processing dengan Metode Image Segmentation HSV,” J. Sains dan Inform., vol. 1, no. 2, hal. 28–37, 2015.

R. Wulanningrum dan N. V. W. Lelitavistara, “Discrete Cosine Transform Untuk Identifikasi Citra Hylocereus Costaricensis,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 6, no. 2, hal. 353, 2015, doi: 10.24176/simet.v6i2.472.

R. D. M. Bimantaka, “IDENTIFIKASI KEMATANGAN BUAH NAGA MERAH MENGGUNAKAN METODE BACKPROPAGATION BERBASIS ANDROID,” Universitas Teknologi Yogyakarta, Yogyakarta, 2017.

F. Nisa’, “Sistem Identifikasi Citra Hylocereus costaricensis dengan Menggunakan Metode K-Nearest Neighbor dan Mean Statistik,” Universitas Nusantara PGRI Kediri, Kediri, 2018.

S. Shidada et al., “Identifikasi Acute Lymphoblastic Leukemia pada Citra Mikroskopis Menggunakan Algoritma Naïve Bayes Evaluas i,” vol. 14, no. 1, hal. 78–83, 2021.

D. Ariadi dan K. Fithriasari, “Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer,” J. SAINS DAN SENI ITS Vol. 4, No.2, vol. 4, no. 2, hal. 248–253, 2015.

A. A. Mahran, R. K. Hapsari, dan H. Nugroho, “PENERAPAN NAIVE BAYES GAUSSIAN PADA KLASIFIKASI JENIS JAMUR BERDASARKAN CIRI STATISTIK ORDE PERTAMA,” J. Ilm. NERO, vol. 5, no. 2, hal. 91–99, 2020.

Z. E. Fitri, A. Baskara, M. Silvia, A. Madjid, dan A. M. N. Imron, “Application of Backpropagation Method for Quality Sorting Classification System on White Dragon Fruit (Hylocereus undatus),” in IOP Conference Series: Earth and Environmental Science, Apr 2021, vol. 672, no. 1, doi: 10.1088/1755-1315/672/1/011001.

Z. E. Fitri, A. Baskara, A. Madjid, dan A. M. N. Imron, “Comparison of Classification for Grading Red Dragon Fruit (Hylocereus Costaricensis),” J. Nas. Tek. Elektro, vol. 11, no. 1, hal. 43–49, 2022, doi: 10.25077/jnte.v11n1.899.2022.

B. K. Banyuwangi, Kecamatan Srono Dalam Angka 2021. Banyuwangi: CV. Anugerah Setia Abadi, 2022.

R. Enggar Pawening, W. Ja, dan F. Shudiq, “Klasifikasi Kualitas Jeruk Lokal Berdasarkan Tekstur dan Bentuk Menggunakan Metode k-Nearest Neighbor (k-NN),” J. Ilmu Komput. dan Desain Komun. Vis., vol. 1, no. 1, hal. 10–17, 2020.

Z. E. Fitri, U. Nuhanatika, A. Madjid, dan A. M. N. Imron, “Penentuan Tingkat Kematangan Cabe Rawit (Capsicum frutescens L.) Berdasarkan Gray Level Co-Occurrence Matrix,” J. Teknol. Inf. dan Terap., vol. 7, no. 1, hal. 1–5, 2020, doi: 10.25047/jtit.v7i1.121.

A. Ghofur, “Implementasi Metode Klasifikasi Naive Bayes Untuk Memprediksi Kualitas Cabai,” J. Ilm. Inform., vol. 1, no. 1, hal. 32–38, 2016, doi: 10.35316/jimi.v1i1.441.

Zilvanhisna Emka Fitri, Politeknik Negeri Jember

Mega Silvia, Politeknik Negeri Jember

Abdul Madjid, Politeknik Negeri Jember

AMN Imron, Universitas Jember

Lalitya Nindita Sahenda, Politeknik Negeri Jember