Main Article Content

Munif Munif Mustain Mustain Kurnia Yahya

Abstract

The tofu factory in Kedungpring does not yet have a prediction system to estimate the number of tofu that will be predicted for the next month. As a result, companies cannot meet market demand in a timely and appropriate amount. Therefore, it is necessary to make a prediction system to determine the amount of tofu production in Kedungpring District. In this research, the application of K-Nearest Neighbor Algorithm Analysis Application to determine the prediction of the number of Web-Based production to make it easy to predict the number of tofu production. The system functional test results show that all features in the application are able to run properly and functionally. Testing the accuracy of the prediction system K-Nearest Neighbor algorithm to determine the prediction of the number of web-based tofu production that can produces a MAPE of 0.68%

Downloads

Download data is not yet available.

Article Details

How to Cite
Munif, M., Mustain, M., & Yahya, K. (2022). Analysis of the K-Nearest Neighbor Algorithm to Determine the Prediction of Tofu Production. Applied Technology and Computing Science Journal, 5(1), 57–64. https://doi.org/10.33086/atcsj.v5i1.3677
Section
Articles
K-Nearest Neighbor, Application, Tofu Production, Prediction of Production Amount

References

D. Satriawan, H. Fitriyah, and A. S. Budi, “Sistem Klasifikasi Tahu Putih Murni dan Tahu Putih Mengandung Formalin Menggunakan Metode K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan ilmu Komput., vol. 3, no. 10, pp. 10287–10293, 2019.

R. K. Niswatin, R. Wulanningrum, and U. Syaidah, “Sistem Prediksi Nilai Ipk Mahasiswa Menggunakan Metode K-Nearest Neighbor,” J. Maklumatika, vol. 3, no. 1, pp. 56–66, 2016.

A. J. T, D. Yanosma, and K. Anggriani, “Implementasi Metode K-Nearest Neighbor (Knn) Dan Simple Additive Weighting (Saw) Dalam Pengambilan Keputusan Seleksi Penerimaan Anggota Paskibraka,” Pseudocode, vol. 3, no. 2, pp. 98–112, 2017, doi: 10.33369/pseudocode.3.2.98-112.

M. R. Fauzi, R. A. Pratama, P. Laksono, and P. Eosina, “Penerapan Big Data Menggunakan Algoritma Multi-Label K-Nearest Neighbor dalam Analisis Sentimen Konsumen UMKM Sektor Kuliner,” Krea-TIF, vol. 9, no. 1, p. 9, 2021, doi: 10.32832/kreatif.v9i1.3587.

Y. Yahya and W. Puspita Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada ‘Lombok Vape On,’” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020, doi: 10.29408/jit.v3i2.2279.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

D. Yunita, “Perbandingan Algoritma K-Nearest Neighbor dan Decision Tree untuk Penentuan Risiko Kredit Kepemilikan Mobil,” J. Inform. Univ. Pamulang, vol. 2, no. 2, p. 103, 2017, doi: 10.32493/informatika.v2i2.1512.

P. Putra, A. M. H Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.

S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,” J. Khatulistiwa Inform., vol. 6, no. 1, pp. 64–69, 2018.

L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1129, 2020, doi: 10.25126/jtiik.2020722608.

W. Yustanti, “Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah,” J. Mat. Stat. dan komputasi, vol. 9, no. 1, pp. 57–68, 2012.

S. Sumarlin, “Implementasi Algoritma K-Nearest Neighbor Sebagai Pendukung Keputusan Klasifikasi Penerima Beasiswa PPA dan BBM,” J. Sist. Inf. Bisnis, vol. 5, no. 1, pp. 52–62, 2015, doi: 10.21456/vol5iss1pp52-62.

Munif Munif, Universitas Islam Lamongan

Mustain Mustain, Universitas Islam Lamongan

Kurnia Yahya, Universitas Islam Lamongan