SOCIAL MEDIA SEBAGAI DATA NON FINANCIAL UNTUK DETEKSI FINANCIAL FRAUD
##plugins.themes.bootstrap3.article.main##
Abstract
Pada era yang serba modern dan digital ini membuat semua hal dapat dilakukan secara digital melalui social media, termasuk melihat apakah suatu perusahaan melakukan financial fraud atau tidak. Penelitian ini menggunakan data non financial dan financial untuk mendeteksi financial fraud. Data non financial diambil dari social media perusahaan yang diproksikan oleh public account, account authentication, account creation time dan posting frequency. Data financial diproksikan dengan EPS, operating margin, ROA, quick ratio, debt ratio, assets turnover dan growth rate of net profit. Penelitian ini menggunakan perhitungan Beneish M-Score untuk menentukan apakah terjadi financial fraud di dalam perusahaan. Penelitian ini menggunakan rancangan penelitian kuantitatif dengan menggunakan sampel perusahaan non keuangan dan perbankan yang terdaftar di BEI tahun 2019-2020. Hasil penelitian menunjukkan bahwa data non financial berupa public account, account authentication, dan account creation time berpengaruh terhadap financial fraud, sedangkan posting frequency tidak berpengaruh terhadap financial fraud. Pada data financial, semua proksinya tidak berpengaruh terhadap financial fraud.
Downloads
##plugins.themes.bootstrap3.article.details##
Copyright (c) 2022 Dian Oktarina
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
ACFE Indonesia Chapter. (2016). Survai Fraud Indonesia 2016. Jakarta.
Association of Certified Fraud Examiners. (2018). Report to the Nation 2018. Retrieved from https://s3-us-west-2.amazonaws.com/acfepublic/2018-report-to-the-nations.pdf
Beneish, M. D., & Vorst, P. (2020). The Cost of Fraud Prediction Errors. Kelley School of Business Research Paper, 55(January 2020), 1–53. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3529662
Benthaus, J., Risius, M., & Beck, R. (2016). Social media management strategies for organizational impression management and their effect on public perception. Journal of Strategic Information Systems, (Desember 2015), 1–13. https://doi.org/10.1016/j.jsis.2015.12.001
Benyoussef, N. (2012). Restatement Announcements: Sincerity Analysis through Information Manipulation Theory. CAAA Annual Conference, (January).
Dong, W. E. I., Liao, S., & Zhang, Z. (2018). Leveraging Financial Social media Data for Corporate Fraud Detection. Journal of Management Information Systems, 35(2), 461–487.
Ghozali, I. (2016). Aplikasi Analisis Multivariate dengan Program IBM SPSS 23 (8th ed.). Semarang: Badan Penerbit Universitas Diponegoro.
Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud – A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152. https://doi.org/10.1016/j.knosys.2017.05.001
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social media. Business Horizons, 53(1), 59–68.
Marks, J. (2012). The Mind Behind The Fraudsters Crime : Key Behavioral and Environmental Elements. Retrieved from https://www.fraudconference.com/uploadedFiles/Fraud_Conference/Content/Course-Materials/presentations/23rd/ppt/10C-Jonathan-Marks.pdf
Oktarina, D. (2018a). Prediksi Financial Distress Menggunakan Rasio Keuangan, Sensitivitas Makroekonomi, dan Intellectual Capital. ULTIMA Accounting | ISSN 2085-4595, 10(1), 16–33.
______________. (2018b). The Effect of Disclosure of Sustainability Report on Financial Distress with Company Performance as Intervening Variables. Journal of Accounting and Strategic Finance, 1(02), 109–121.
Zhang, J., Yao, J., Wang, L., Chen, Y., & Pan, Y. (2020). A Financial fraud Detection Model Based on Organizational Impression Management Strategy A Financial fraud Detection Model Based on Organizational Impression Management Strategy. Journal of Physics: Conference Series, 1–11. https://doi.org/10.1088/1742-6596/1616/1/012093